
C H E T H A N  P A N D A R I N A T H  &  Y A H I A  H .  A L I

Speaking might seem an effortless 
activity, but it is one of the most com-
plex actions that we perform. It requires 

precise, dynamic coordination of muscles 
in the articulator structures of the vocal 
tract — the lips, tongue, larynx and jaw. 
When speech is disrupted as a consequence of 
stroke, amyotrophic lateral sclerosis or other 
neurological disorders, loss of the ability to 
communicate can be devastating. On page 493, 
Anumanchipalli et al.1 bring us closer to a 
brain–computer interface (BCI) that can 
restore speech function. 

Brain–computer interfaces aim to help 
people with paralysis by ‘reading’ their inten-
tions directly from the brain and using that 
information to control external devices or move 
paralysed limbs. The development of BCIs for 
communication has been mainly focused on 
brain-controlled typing2, allowing people with 
paralysis to type up to eight words per minute3. 

Although restoring this level of function might 
change the lives of people who have severe 
communication deficits, typing-based BCIs 
are unlikely to achieve the fluid communica-
tion of natural speech, which averages about 
150 words per minute. Anumanchipalli et al. 
have developed an approach in which spoken 
sentences are produced from brain signals 
using deep-learning methods.

The researchers worked with five volunteers 
who were undergoing a procedure termed 
intracranial monitoring, in which electrodes 
are used to monitor brain activity as part of 
a treatment for epilepsy. The authors used a 
technique called high-density electrocortico
graphy to track the activity of areas of the brain 
that control speech and articulator movement 
as the volunteers spoke several hundred sen-
tences. To reconstruct speech, rather than 
transforming brain signals directly into audio 
signals, Anumanchipalli et al. used a two-stage 
decoding approach in which they first trans-
formed neural signals into representations 

of movements of the vocal-tract articulators, 
and then transformed the decoded move-
ments into spoken sentences (Fig. 1). Both of 
these transformations used recurrent neural 
networks — a type of artificial neural network 
that is particularly effective at processing 
and transforming data that have a complex 
temporal structure.  

Learning how brain signals relate to the 
movements of the vocal-tract articulators was 
challenging, because it is difficult to measure 
these movements directly when working in 
a hospital setting with people who have epi-
lepsy. Instead, the authors used information 
from a model that they had developed previ-
ously4, which uses an artificial neural network 
to transform recorded speech into the move-
ments of the vocal-tract articulators that pro-
duced it. This model is not subject-specific; 
rather, it was built using a large library of data 
collected from previous research participants4. 
By including a model to estimate vocal-tract 
movements from recorded speech, the authors 
could map brain activity onto vocal-tract 
movements without directly measuring the 
movements themselves.

Several studies have used deep-learning 
methods to reconstruct audio signals from 
brain signals (see, for example, refs 5, 6). These 
include an exciting BCI approach in which 
neural networks were used to synthesize spo-
ken words (mostly monosyllabic) directly from 
brain areas that control speech6. By contrast, 
Anumanchipalli and colleagues split their 
decoding approach into two stages (one that 
decodes movements of the vocal-tract articu-
lators and another that synthesizes speech), 
building on their previous observation that 
activity in speech-related brain areas corre-
sponds more closely to the movements of the 
vocal articulators than to the acoustic signals 
produced during speech4 .

The authors’ two-stage approach resulted 
in markedly less acoustic distortion than 
occurred with the direct decoding of acoustic 
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Brain implants that let 
you speak your mind
A brain–computer interface device synthesizes speech using the neural signals 
that control lip, tongue, larynx and jaw movements, and could be a stepping stone 
to restoring speech function in individuals unable to speak. See Article p.493
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Figure 1 | Brain–computer interfaces for speech synthesis.  a, Previous 
research in speech synthesis has taken the approach of monitoring neural 
signals in speech-related areas of the brain using an electrocorticography 
(ECoG) device and attempting to decode these signals directly into synthetic 
speech using a type of artificial neural network called a recurrent neural 
network (RNN). b, Anumanchipalli et al.1 developed a different method 
in which RNNs are used for two steps of decoding. One of these decoding 
steps transforms neural signals into estimated movements of the vocal-tract 
articulators (red) — the anatomical structures involved in speech production 
(lips, tongue, larynx and jaw). For training purposes in the first decoding step, 

the authors needed data that related each person’s vocal-tract movements to 
their neural activity. Because Anumanchipalli et al. could not measure each 
person’s vocal-tract movements directly, they built an RNN to estimate these 
movements on the basis of a large library of previously collected data4 of 
vocal-tract movements and speech recordings from many people. This RNN 
produced vocal-tract movement estimates that were sufficient to train the first 
decoder. The second decoding step transforms these estimated movements 
into synthetic speech. Anumanchipalli and colleagues’ two-step decoding 
approach produced spoken sentences that had markedly less distortion than is 
obtained with a comparable direct decoding approach.  
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features. If massive data sets spanning a wide 
variety of speech conditions were available, 
direct synthesis would probably match or 
outperform a two-stage decoding approach. 
However, given the data-set limitations that 
exist in practice, having an intermediate stage 
of decoding brings information about normal 
motor function of the vocal-tract articulators 
into the model, and constrains the possible 
parameters of the neural-network model that 
must be evaluated. This approach seems to 
have enabled the neural networks to achieve 
higher performance. Ultimately, ‘biomimetic’ 
approaches that mirror normal motor function 
might have a key role in replicating the high-
speed, high-accuracy communication typical 
of natural speech.

The development and adoption of robust 
metrics that allow meaningful comparisons 
across studies is a challenge in BCI research, 
including the nascent field of speech BCIs. For 
example, a metric such as the error in recon-
structing the original spoken audio might have 
little correspondence to a BCI’s functional 
performance; that is, whether a listener can 
understand the synthesized speech. To address 
this problem, Anumanchipalli et al. developed 
easily replicable measures of speech intel-
ligibility for human listeners, taken from the 
field of speech engineering. The researchers 
recruited users on the crowdsourcing market
place Amazon Mechanical Turk, and tasked 
them with identifying words or sentences from 
synthesized speech. Unlike the reconstruction 
error or previously used automated intelligibil-
ity measures6, this approach directly measures 
the intelligibility of speech to human listeners 
without the need for comparison with the 
original spoken words.

Anumanchipalli and colleagues’ results  
provide a compelling proof of concept for a 
speech-synthesis BCI, both in terms of the 
accuracy of audio reconstruction and in the 
ability of listeners to classify the words and 
sentences produced. However, many chal-
lenges remain on the path to a clinically viable 
speech BCI. The intelligibility of the recon-
structed speech was still much lower than 
that of natural speech. Whether the BCI can 
be further improved by collecting larger data 
sets and continuing to develop the underlying 
computational approaches remains to be seen. 
Additional improvements might be obtained 
by using neural interfaces that record more-
localized brain activity than that recorded with 
electrocorticography. Intracortical micro
electrode arrays, for example, have generally 
led to higher performance than electrocorti-
cography in other areas of BCI research3,7.

Another limitation of all current approaches 
for speech decoding is the need to train decod-
ers using vocalized speech. Therefore, BCIs 
based on these approaches could not be directly 
applied to people who cannot speak. But 
Anumanchipalli and colleagues showed that 
speech synthesis was still possible when volun-
teers mimed speech without making sounds, 

although speech decoding was substantially 
less accurate. Whether individuals who can 
no longer produce speech-related movements 
will be able to use speech-synthesis BCIs is a 
question for future research. Notably, after 
the development of the first proof-of-concept 
studies of BCIs to control arm and hand move-
ments in healthy animals, similar questions 
were raised about the applicability of such 
BCIs in people with paralysis. Subsequent 
clinical trials have compellingly demonstrated 
rapid communication, control of robotic arms 
and restoration of sensation and movement of 
paralysed limbs in humans using these BCIs8,9.

Given that human speech production cannot 
be directly studied in animals, the rapid pro-
gress in this research area over the past decade 
— from groundbreaking clinical studies that 
probed the organization of speech-related brain 
regions10 to proof-of-concept speech-synthesis 
BCIs6 — is truly remarkable. These achieve-
ments are a testament to the power of multi-
disciplinary collaborative teams that combine 
neurosurgeons, neurologists, engineers, neuro-
scientists, clinical staff, linguists and computer 
scientists. The most recent results would also 
have been impossible without the emergence 
of deep-learning and artificial neural networks, 
which have widespread applications in neuro-
science and neuroengineering11–13. 

Finally, these compelling proof-of-concept 
demonstrations of speech synthesis in indi-
viduals who cannot speak, combined with the 
rapid progress of BCIs in people with upper-
limb paralysis, argue that clinical studies 

involving people with speech impairments 
should be strongly considered. With continued 
progress, we can hope that individuals with 
speech impairments will regain the ability to 
freely speak their minds and reconnect with 
the world around them. ■
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C O R A L I E  J E H A N N O  &  H A R I T Z  S A R D O N

The fact that most currently used plastics 
cannot be easily recycled has produced 
severe environmental problems, caused 

considerable losses to the global economy and 
depleted finite natural resources1,2. Of the most 
widely used plastics today, thermosets are of 
great interest for high-performance appli-
cations, but are particularly impractical for 
recycling because they cannot be reprocessed 
using heat or solvents. Writing in Nature 
Chemistry, Christensen et al.3 report thermo
sets formed using covalent links known as 
diketoenamines, which can be reorgan-
ized within the material’s polymer network. 

Remarkably, the diketoenamines allow the 
plastics to be recycled in an energy-efficient 
process to regenerate pristine monomers, which 
can then be used to make thermosets that are 
almost identical to the original material.

Conventional plastics are polymers that 
are designed to survive ambient onslaughts 
from light, water, heat and so on. But this 
resilience also makes them difficult to recycle. 
Most widely used plastics can be recycled in 
principle, but reprocessing is costly, energy-
demanding and usually produces poor-
quality materials. The performance of recycled 
plastics is therefore typically not as good as that 
of newly made polymers4. 

Thermosets are particularly problematic 

P O LY M E R  C H E M I S T R Y

A step towards truly 
recyclable plastics
Crosslinked polymer networks known as thermoset plastics have many 
applications, but can’t be reshaped or recycled. A thermoset with reorganizable 
crosslinks retains its useful properties, but has recyclability built in.
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