
where bone tissue forms) at the ends of bones 
soon after birth. Newton et al. investigated the 
mammalian target of rapamycin complex 1 
(mTORC1) pathway, which has been reported 
to regulate stem-cell function3. They found that 
chondrocyte-specific activation of mTORC1 
signalling leads to a shift from asymmetric 
to symmetric stem-cell divisions, and conse-
quently to an increased number of stem cells in 
the resting zone. These observations strongly 
support a role for mTORC1 in regulating the 
self-renewal potential of resting-zone stem cells.

Both groups also analysed the role of the 
protein Indian hedgehog (Ihh), a member of 
the Hedgehog family of growth factors that is 
expressed in early-differentiated hypertrophic 
chondrocytes. Ihh has been shown to induce 
the expression of PTHrP in resting-zone 
chondrocytes, which in turn inhibits the pre-
mature initiation of hypertrophy in proliferat-
ing cells4. Additionally, both Ihh and PTHrP 
activate chondrocyte proliferation3.

Newton et al. and Mizuhashi et al. provide 
evidence that the inhibition of Hedgehog 
signalling reduces the length of chondrocyte 
columns. Newton and colleagues also observed 
increased proliferation and the expression 
of genes targeted by Hedgehog proteins 
in resting-zone cells after activation of the 
Hedgehog pathway. These findings suggest 
that Hedgehog signalling has a role in control-
ling the stem-cell character of resting-zone cells.

However, given that Ihh regulates PTHrP 
expression directly, the observed changes in 
chondrocyte-column length and cell pro-
liferation might also be a consequence of 
altered PTHrP levels. Furthermore, when 
Newton et al. inhibited Hedgehog signalling 
and activated the mTORC1 pathway simul-
taneously, some stem cells moved from the 
resting zone into the proliferating zone with-
out differentiating into flat cells. Together, 
these observations support a role for Ihh in 
regulating stem-cell proliferation rather than 
stem-cell identity. Given that the interaction 
between Ihh and PTHrP signalling is complex, 
it will be challenging to distinguish clearly 
between the roles of Ihh as a regulator of stem-
cell proliferation, PTHrP expression and the 
induction and maintenance of ‘stemness’.

The model of how cartilage is replaced by 
bone has changed substantially in the past few 
years. Previously, hypertrophic chondrocytes 
were thought to die and then be replaced by 
bone-forming cells called osteoblasts. However, 
more recent fate-mapping studies have shown 
that a fraction of hypertrophic chondrocytes 
differentiate into bone-forming osteoblasts or 
long-lived stem cells and progenitor cells of 
the bone-marrow stroma5–7. Mizuhashi et al. 
now demonstrate that cells that are descend-
ants of resting-zone stem cells contribute to 
the bone-marrow stroma. Therefore, such 
stem cells seem to follow an unusual path of 
differentiation, transforming from stem cells 
of the chondrocyte lineage into differenti-
ated chondrocytes, and then into multilineage  

stem cells of the bone-marrow stroma.
Future investigations should clarify how 

many of the postnatal bone-marrow stem 
cells descend from resting-zone stem cells, and 
whether these postnatal cells differ function-
ally from other bone-marrow cells. Given that 
bone-marrow-derived skeletal stem cells are 
required for bone turnover and fracture repair 
throughout a person’s life, deciphering the 
specific features of the chondrocyte-derived 
population will be of high clinical relevance.

The identification of a growth-plate-specific 
skeletal stem cell is an important step towards 
understanding human skeletal growth and 
associated diseases, but many questions 
remain. Follow-up studies need to determine 
which mechanisms besides Hedgehog and 
mTORC1 signalling induce and maintain the 
stem-cell character of these cells, which type of 
embryonic chondrocyte evolves into a resting-
zone stem cell, and how the induction of that 
process is linked to the formation of secondary 
ossification centres.

Further studies also need to clarify how 
the differentiation of stem cells in the resting 
zone is regulated, and which components of 
the chondrocyte-specific extracellular matrix 

(the network of proteins and sugar molecules 
that surrounds cells) are required to gener-
ate a stem-cell niche. Finally, given that some 
hypertrophic chondrocytes differentiate into 
osteoblasts and bone-marrow stem cells, 
whereas others die5–7, it is tempting to ask 
whether the fate of hypertrophic cells is already 
determined by the distinct subtypes of resting-
zone stem cell from which they originate. ■
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M A R I A  S C H U L D

Machine learning and quantum 
computing have their staggering 
levels of technology hype in 

common. But certain aspects of their math
ematical foundations are also strikingly 
similar. On page 209, Havlíček et al.1 exploit 
this link to show how today’s quantum com-
puters can, in principle, be used to learn from 
data — by mapping data into the space in 
which only quantum states exist.

One of the first things one learns about 
quantum computers is that these machines 
are extremely difficult to simulate on a clas-
sical computer such as a desktop PC. In other 
words, classical computers cannot be used to 
obtain the results of a quantum computation. 
The reason is that a lot of numbers are required 
to describe each internal step of the computa-
tion. Consider the multi-step procedure that 
many people learn at school for dividing large 
numbers. If this were a quantum computa-
tion being simulated on a classical computer, 

every intermediate step could easily need more 
numbers to describe it than there are atoms in 
the observable Universe.

The state of a quantum system when 
described by a collection of numbers is known 
as a quantum state. And if a quantum state is 
associated with many values, it is said to ‘live’ in 
a large space. For certain quantum computers 
that are based on continuous variables, such 
spaces can even be infinitely large.

Machine learning, by comparison, analyses 
data that live in much smaller spaces — that is, 
the data are described by many fewer values. 
For example, a photograph that contains 
one million pixels records just three million 
numbers to describe the amount of red, green 
and blue in each pixel. A prominent task of 
machine learning could be to guess the con-
tent of the image, or to produce similar images. 
However, a well-established theory in machine 
learning called kernel methods2 treats data in 
a way that has a similar feel to how quantum 
theory deals with data.

In a nutshell, kernel methods carry out 

I N F O R M AT I O N  S C I E N C E

Machine learning in 
quantum spaces
Ordinary computers can perform machine learning by comparing mathematical 
representations of data. An experiment demonstrates how quantum computing 
could use quantum-mechanical representations instead. See Letter p.209
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50 Years Ago
In spite of the enlightened attitudes 
of many countries, the opinion still 
prevails in Britain that engineering 
is not a suitable career for women. In 
France, one engineer in twenty-eight 
is a woman, and in Syria one in 
fourteen, while in Russia the figure 
is one in three. But in Britain, only 
one engineer in five hundred is a 
woman … Last week, the Women’s 
Engineering Society … celebrated 
its fiftieth anniversary. At the same 
time “Women in Engineering Year” 
was launched in a concerted effort 
to break down the prejudice  … 
against women taking their place 
in a profession which needs as 
many eager recruits as it can get. 
Conferences, exhibitions, lectures 
and visits have been organized 
throughout Britain to demonstrate 
that engineering does not consist 
entirely of heavy and dirty work 
requiring massive physical stamina, 
and that women have a valuable part 
to play.
From Nature 15 March 1969

100 Years Ago
Of late years much attention has been 
given to the remarkable power of 
charcoal to absorb gases of all kinds, 
and during the war extensive use has 
been made of this property in the 
construction of masks for removing 
noxious gases from the air inhaled by 
the wearer … I should like to remind 
readers of Nature that the first 
practical application of charcoal for 
such purposes was made by Dr. John 
Stenhouse, lecturer in chemistry 
at St. Bartholomew’s Hospital. In 
1854 Stenhouse devised a charcoal 
respirator consisting of a perforated 
zinc case filled with granular wood 
charcoal, and adapted to fit over 
the mouth and nose. Respirators of 
this kind were in use by nurses and 
dressers in St. Bartholomew’s …
down to the time when Lister’s 
antiseptic system rendered such 
protection from the offensive 
emanations of sores unnecessary.
From Nature 13 March 1919

machine learning by defining which data 
points are similar to each other and which are 
not. Mathematically speaking, similarity is 
a distance in data space — that is, a distance 
between the representations of data points as 
numbers. Similar images are assumed to have 
similar content, and distances between data 
points can be crucial in machine learning. But 
defining similarities is not as straightforward 
as it sounds. For example, what is the distance 
in data space between two images if derived on 
the basis of the amount of red in each image?

Kernel theory showed that many definitions 
of similarity in data space are mathematically 
equivalent to a simple measure of similar-
ity in a much larger, possibly infinitely large, 
space (Fig. 1). Consequently, every time two 
images are compared, the images are implicitly 
mapped to a representation in a huge space, 
and a simple similarity is computed. No 
ordinary computer can calculate this large rep-
resentation explicitly. But perhaps a quantum 
computer can? Because quantum computers 
carry out computations in extremely large 
spaces, what happens if data are mapped into 
the space that is inhabited by quantum states?

Havlíček et al. and my research team3 recog-
nized this potentially powerful link between 
machine learning and quantum comput-
ing at roughly the same time. Remarkably, 
both groups proposed essentially the same 
two strategies for using the idea to design 
quantum algorithms for machine learning. 
The first strategy makes only minimal use of 

the quantum computer, as a mere hardware 
addition to a conventional machine-learning 
system: the quantum device returns similari-
ties when given two data points. The second 
strategy carries out the actual learning on the 
quantum computer, aided by the classical one.

A key contribution from Havlíček et al. 
is that they implemented the two strategies 
in a proof-of-principle experiment on a real 
quantum computer: one of IBM’s quantum 
chips. Despite the inflated claims of some 
news reports, anyone who has tried quantum 
computing in the cloud knows that collecting 
meaningful data from these devices is noto-
riously difficult, owing to the high levels of 
experimental noise in the computation. This 
is probably why the authors’ experiment is 
stripped to its bare bones, in some people’s 
view, maybe too much. The quantum space 
has only four dimensions, because the set-
up uses two quantum bits (qubits) of IBM’s 
smallest, five-qubit chip — at a time when the 
IBM cloud service already offers access to a 
20-qubit device. The data set is likewise hand-
engineered in such a way that it is simple to 
analyse in this four-dimensional space.

Nevertheless, Havlíček and colleagues’ work 
presents an intriguing proof-of-principle dem-
onstration of a potentially revolutionary way 
of using quantum computers for machine 
learning. After many studies offering various 
attempts to mould the much more popular 
artificial neural networks into quantum com-
puting, kernel methods provide a refreshingly 

Classical computer

Quantum computer

Data space

Quantum space

1

1

2

2

3

3

6

6

5

5

4

4

1

2 3

6

5

4

Data

Distances

Quantum state

Figure 1 | Quantum-enhanced machine learning.  Havlíček et al.1 demonstrate how quantum 
computers could improve the performance of machine-learning algorithms. In this simple illustration, 
a conventional (classical) computer uses machine learning to classify images of animals. Images whose 
pixels contain similar colours are positioned close together in data space. The classical computer sends 
these data to a quantum computer that maps each of the images to a particular quantum state in a space 
of such states. Images that are close together in data space, but are different in content, are represented 
by states that are far apart in quantum space. The quantum computer sends the distances between the 
quantum states to the classical computer to improve the image classification.
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A N I R B A N  M A I T R A 

Pancreatic cancer is rapidly lethal, and the 
five-year post-diagnosis survival rate in 
the United States is 8% (ref. 1). At diag-

nosis, the cancer has usually already spread 
beyond its primary pancreatic site to invade 
other parts of the body, most commonly the 
liver2. This renders futile the option of sur-
gically removing the pancreatic tumour to 
prevent such lethal spread, or metastasis3. On 
page 249, Lee et al.4 report their identification, 
in mice and humans, of molecules made in 
the pancreas that travel to the liver and alter 
its environment to create conditions that assist 
cancer-cell invasion. 

Much remains to be uncovered about the 
signals and sequence of events that precede 
and facilitate establishment of the implanta-
tion site for tumour invasion — known as the 
pro-metastatic niche5. Alterations that enable 
niche formation include blood-vessel changes 
that create cancer-cell docking sites and modi-
fications to the layer of endothelial cells that 
form an outer barrier around tissues and that 
must be crossed for tissue invasion5. 

Although metastasis is usually the main 
reason for the failure of cancer treatment and 
for eventual death, it is a remarkably inefficient 
process. Cancers release millions of cells into 
the bloodstream each day, yet studies of skin 
cancer in animal models indicate that fewer 
than 0.1% of tumour cells form metastases6. For 
metastasis to be successful, cancer cells must 
exit their primary site, enter the bloodstream 
and overcome challenges that include surviv-
ing physical stress in blood vessels, adapting 
to the unfamiliar cellular surroundings of a 
different host organ, and evading destruction 
by immune cells. Therefore, understanding 

the factors that create a pro-metastatic niche 
are of crucial importance for clarifying how 
cancer cells overcome such obstacles to become 
established at a distant site. 

Lee and colleagues investigated how 
pancreatic-tumour cells generate the pro-
metastatic niche. The authors demonstrate 

that, in mice, the protein interleukin 6 (IL-6), 
a type of immune-signalling molecule called 
a cytokine, is secreted from non-cancerous 
fibroblast cells7 in the microenvironment of 
the pancreatic tumour cells (Fig. 1). Fibroblasts 
are the main cells of the connective tissue. The 
authors report that IL-6 binds to its receptor 
protein on liver cells and drives expression of 
the transcription-factor protein STAT3, which 
is then activated by undergoing phosphoryla-
tion (the addition of a phosphate group). Liver 
cells that express such activated STAT3 secrete 
the proteins SAA1 and SAA2, which prepare 
the liver for the influx of cancer cells. The SAA 
proteins attract myeloid cells, which dampen 
the body’s immune-surveillance response 
by secreting cytokines that inhibit cancer-
killing T cells. SAA1 and SAA2 also drive the 
activation of hepatic stellate cells, a type of liver 
cell that deposits extracellular-matrix mater
ial, thereby aiding the initial anchoring and 

natural bridge between machine learning and 
quantum theory. However, recognizing this 
bridge is only the beginning.

For instance, it remains to be seen whether 
the way in which Havlíček et al. represent 
data in quantum space is actually useful for 
real-world machine-learning applications. 
That is, it is not known whether the approach 
is associated with a meaningful measure of 
similarity that, for example, in classifying 
images of animals, places cat pictures close to 

cat pictures but not to dog pictures. Moreover, 
it is unclear whether there are other strategies 
that would work better. And would these tech-
niques be good enough to beat almost 30 years 
of classical methods? If so, the desperate 
search for a ‘killer application’ for quantum 
computers would be over. But the answer to 
this question is probably more complicated. ■
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Figure 1 | A signal from the pancreas aids cancer invasion of the liver.  Lee et al.4 report studies in mice 
and humans that have uncovered a process driving the deadly step of cancer spread. The authors report 
that the protein IL-6, which is synthesized in non-cancerous fibroblast cells adjacent to a pancreatic 
cancer, is a key driver of tumour invasion of the liver. IL-6 travels through the bloodstream to the liver, 
where it binds to its receptor on liver cells. This drives expression of the protein STAT3, which is then 
phosphorylated (P denotes a phosphate group), and triggers the expression of SAA proteins (SAA1 
and SAA2). These proteins are secreted from the cell and attract myeloid cells, which express cytokine 
molecules that dampen immune responses. SAA proteins also activate hepatic stellate cells, which deposit 
extracellular-matrix material (ECM). These changes create an environment, termed a pro-metastatic 
niche, that supports cancer colonization and growth. Once the pro-metastatic niche has formed, 
pancreatic cancer cells can invade the liver to form a secondary tumour site (metastasis).  
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Molecular envoys aid 
cancer spread
Pancreatic cancer usually spreads to the liver. The identification of signals from 
cells adjacent to pancreatic tumours that boost liver colonization might suggest 
ways to block this deadly form of cancer invasion. See Letter p.249
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