
Structures of ion channels, such as this insect smell receptor, are tough targets for X-ray crystallography. Cryo-electron microscopy has revealed this and more.

B Y  M O N Y A  B A K E R

Once derided as ‘blobology’ for its blurry 
images, cryo-electron microscopy 
(cryo-EM) is now churning out high-

resolution structures of everything from virus 
particles to enzymes. The number of cryo-EM 
images uploaded to the Electron Microscopy 
Data Bank (EMDB) has boomed from just 8 
in 2002 to 1,106 last year — the same year the 
technique won its developers the Nobel Prize 
in Chemistry.

The quality of cryo-EM images now rivals 
that of X-ray crystallography, long the domi-
nant technique for solving protein structures. 
The technique has also succeeded where 
crystallography has struggled: showing, for 
instance, how temperature-sensitive ion chan-
nels work, characterizing pathological proteins 
in neurodegenerative disease and detailing how 
viruses can interact with antibodies1. Conse-
quently, many veteran crystallographers are 

giving up on crystals and freezing proteins for 
cryo-EM instead. 

Publications of cryo-EM structures are 
coming in fast (see ‘Widening the bottle-
neck’). But, some researchers worry, not every
one knows how to evaluate them, and some 
are calling for new practices and tools to help 
them do so. 

CRITERIA CREATION
The surge in cryo-EM is largely a result of better 
electron detectors and image-processing tech-
niques, says Richard Henderson of the Medical 
Research Council Laboratory of Molecular 
Biology in Cambridge, UK, who shared Nobel 
prize. But, he says, the field still lacks the kind of 
standardized tools for producing robust struc-
tural models that crystallographers developed 
as their field matured. “This has led to a lot of 
sloppiness,” he says. “What is needed now are 
better criteria to encourage researchers to put 
more work into their model-building.”

Instead, the race is on to publish structures 
with ever-better resolution, and that is dis-
couraging careful work, says Holger Stark, an 
electron microscopist at the Max Planck Insti-
tute for Biophysical Chemistry in Göttingen, 
Germany. Some published structures depict 
atom-level precision without acknowledging 
that certain regions of the structure are “fan-
tasy”, with scant data to back up any particular 
interpretation, he says. “It’s just noise in areas 
where people have put in atomic coordinates.”

There is no question that cryo-EM has 
enabled fantastic discoveries and that many 
structures are solid, says Gabriel Lander, a struc-
tural biologist at the Scripps Research Institute 
in La Jolla, California. But he cautions that 
many researchers are too quick to assume that 
all the details in the structure are correct. As a 
result, someone who uses a structure to design 
mutant versions of a protein to understand its 
mechanism, or who sees a ligand binding in 
a poorly defined spot, could end up doing 

CRYO-ELECTRON 
MICROSCOPY SHAPES UP

As the imaging technique produces ever-sharper protein structures, 
researchers are racing to develop tools to assess how accurate they are.
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Electron Microscopy 
Public Image Archive
(EMPIAR)

Electron Microscopy
Data Bank (EMDB)

Where to share data

MODELLING IN ICE
In cryo-EM, thousands of raw electron-microscopy 
images are collected and computationally 
analysed to build up a density map that re�ects 
the shape of the protein. 

This is then combined with the known protein 
sequence to create a �nal model showing the 
placement of atomic groups. 

Protein Data Bank
(PDB)

RAW IMAGE

MAP

MODEL

months of failed experiments, he explains. 
“I don’t want the reputation of cryo-EM sullied 
by over-interpretation.” 

RESOLUTION FIXATION
Protein structures are often judged by a single 
factor: resolution, the level of detail a structure 
shows. That metric is straightforward to ascer-
tain in crystallography, but not in cryo-EM.

In crystallography, a highly ordered lattice of 
tightly packed molecules is rotated through an 
X-ray beam, and the resolution of the resulting 
image can be calculated directly from the dif-
fraction patterns made by the deflected photons. 
Those patterns are then transformed into ‘maps’ 
of electron density, which researchers combine 
with the protein sequence to build a model. 
The model represents how specific chemical 
building blocks of a protein fold into sheets 
and helixes (visible at a resolution of around 
5 ångstroms), and how side chains of amino 
acids are positioned (which start to become vis-
ible around 3.5 Å). Big, floppy objects tend not 
to form ordered crystals, so as a rule, the smaller 
and more rigid the protein, the more amenable 
it is to crystallography.

In cryo-EM, proteins and other macro
molecular complexes are flash-frozen in a thin 
layer of water, ideally not much thicker than 
the protein itself. Irradiating that layer with 
low-energy electrons produces 2D images of 
individual particles on the detector — fuzzy 
shadows cast from scattered electrons (see 
‘Modelling in ice’). Thousands or even 
hundreds of thousands of these noisy images 
are then computationally sorted and recon-
structed to create a 3D map. Finally, other types 
of software fit the protein sequence into the 
map to create a model. The smaller the object, 
the noisier the images, so cryo-EM tends to 
work best for larger structures.

To avoid mistaking noise for signal, 
researchers typically split particles into two 

subsets and build ‘half maps’ from each. The 
correlation between those two maps is used 
to calculate resolution — but it’s an imperfect 
proxy, says Edward Egelman, a structural biolo-
gist at the University of Virginia in Charlottes-
ville. “That’s not measuring resolution, per se, 
it’s measuring consistency.” And the resulting 
values, he says, must be taken with a grain of 
salt. Indeed, he says that the race to claim high 
resolution has sometimes led researchers to 
“silliness” — such as reporting resolution to 
a hundredth or even a thousandth of an ång-
strom, a level of precision that makes no sense 

with cryo-EM.
Also, not all false signals are random noise. 

Egelman has demonstrated that systematic 
artefacts (such as computationally adding non-
existent cylinders into both half maps) can dras-
tically (and erroneously) improve the apparent 
resolution of a structure2. 

Sometimes researchers actually back-com-
pute an electron-density map from the struc-
tural model that created it, and then revisit their 
data to select particles that are most likely to 
confirm the model. “It’s a kind of bias,” says crys-
tallographer Piotr Neumann at the University of 
Göttingen in Germany. “This kind of cheating is 
not acceptable, but it’s okayish.” Another, more 
common, technique is to create a ‘mask’ of the 
expected overall shape of the protein and use 
that to exclude portions of images. Done judi-
ciously, this boosts the signal-to-noise ratio; 
done aggressively, it shoehorns or ‘overfits’ data.

TWEAKED TO FIT
Structural biologists joke that there are many 
more structures published with resolutions of 
2.9 Å than of 3.0 Å — an apparent symptom 
of over-aggressive analyses. But even without 
gaming, describing a protein with a single num-
ber is problematic, says Lander. It obscures the 
fact that the quality of a cryo-EM map varies 
dramatically, with the poorest-quality fit often 
occurring in the most flexible and biologically 
interesting areas of the protein. “There is no 
one metric that is good,” says Neumann. “All 
metrics can be biased or not fully reliable. So, 
we need to use many simultaneously.”

Earlier this year, Neumann and his colleagues 
set out to document how well protein structure 
models in the Protein Data Bank fit the cor-
responding maps in the EMDB. They found 
only low or moderate agreement for more than 
three-quarters of the 565 structures examined, 
suggesting that large swathes of the models 
should be viewed with scepticism3.

Some drug developers, at least, are approach-
ing the models with caution. Christian Wies-
mann, head of the cryo-EM team at the 
Novartis Institutes for Biomedical Research in 
Basel, Switzerland, says that when looking at 
models of proteins bound to small molecules, 
he typically downloads maps from the EMDB, 
assesses how other researchers nestled the com-
pounds into the protein and then uses his own 
judgement. More than once, Wiesmann says, 
he would have made different calls — differ-
ences that could affect drug design. 

Not every researcher possesses that level 
of structural sophistication. But even if they 
did, maps can be hard to vet. Authors must 
deposit their maps in the EMDB when pub-
lishing papers, but these deposits are often 
insufficiently annotated, says Alex Wlodawar, 
a structural biologist at the US National Can-
cer Institute in Frederick, Maryland, who has 
compared crystal and cryo-EM structures at 
high resolutions and found that the latter are 
often “optimistic”4. Researchers might deposit 
the raw map without the refined or ‘sharpened’ 

Better validation tools and practices are not 
the only thing holding back cryo-electron 
microscopy; many researchers are unable 
to produce images of sufficient quality to 
even start the process.

“The real bottleneck is specimen prep,” 
says Bridget Carragher, electron microscopy 
co-director at the New York Structural 
Biology Center. But a technique she has 
co-developed might substantially broaden 
that bottleneck. 

Carragher and her co-director Clint Potter 
developed robots that have droplet-sensing 
cameras and piezoelectric devices similar to 
those found in an inkjet printer. The robots 
can apply small volumes of sample onto a 
grid just as another robot plunges the sample 
swiftly and evenly into cryogen, creating a 

thin, uniform, frozen layer that is perfect 
for imaging. The grid itself is covered in 
nanowires that wick away excess solution in a 
more controlled way than the blotting paper 
typically used. That also reduces the chance 
of proteins getting stuck at the air–water 
interface, which can cause them to denature 
or adopt preferred orientations rather than 
the random orientations that are necessary 
for them to be seen from every angle. 

The system, called Spotiton, allows users 
to prepare more samples more quickly 
and using less protein, and ensures that 
a greater fraction will be usable. The pair 
have licensed Spotiton to TTP Labtech in 
Melbourn, UK, which plans to commercialize 
the system in the next year or so under the 
name Chameleon. M.B.

Widening the bottleneck
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map used to build the model, or without 
reporting whether they used a mask in build-
ing it. And very few deposit the half maps used 
to validate their analysis. 

MAPPING THE FUTURE
Like models, maps are highly variable in 
quality, says Ardan Patwardhan, who man-
ages the EMDB. Suites of automated and 
semi-automated tools have been created to 
help researchers turn 2D cryo-EM images into 
3D maps. To help assess these workflows, the 
EMDB has run several validation competi-
tions. It found that the greatest variability came 
not from the software packages, but from the 
experience level of the users. Less-experienced 
groups used default parameters; the best teams 
tailored settings to the data they had. That can 
make the difference between clearly visible side 
chains and blurry secondary structures, even 
when starting from the same raw images5. 

Today, researchers are calling for better 
methods for validating cryo-EM maps and 
models6 — and raw image data could help. 
In 2014, Patwardhan and his colleagues at 
the European Bioinformatics Institute (EBI) 
in Cambridge, UK, created the Electron 

Microscopy Public Image Archive. The largest 
of the current 175 deposits of raw image data 
is more than 12 terabytes, which takes about 5 
days to download.

Better methods for representing uncer-
tainty could also help. Lander has proposed 
that researchers provide a spectrum of models7 
to better illustrate the range of structures that 
might fit the data. Maya Topf, a computational 
structural biologist at Birkbeck, University of 
London, has helped to create software called 
TEMPy that measures the quality of the model 
at the scale of amino acids rather than of the 
entire structure. Although this is not yet man-
datory, the research community is starting to 
expect these kinds of evaluations, she says8. 
“The awareness is growing. More and more peo-
ple are reporting in papers the local resolution.”

Still, cryo-EM has a long way to go to match 
practices of crystallography. “The fact that 
data and models need to be validated has to 
become ingrained in people’s minds, especially 
as the field attracts many new practitioners who 
don’t have decades of experience,” says Gerard 
Kleywegt, a structural biologist at the EBI. And, 
of course, some things are fundamentally differ-
ent: crystallography captures proteins in rigid 

conformations, whereas cryo-EM can show 
more natural, and naturally ambiguous, confor-
mations for which people are still developing the 
language to describe. Improvements will require 
better methods, greater consensus and better 
practices — all of which take time to develop. 
A validation task force met in September 2010 
to develop recommendations, Kleywegt notes. 
“The field has evolved so rapidly since then that 
a follow-up meeting is overdue.” Planning for a 
2019 meeting is already under way. ■

Monya Baker is an editor at Nature.
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Big data fresh from the sea
Machine learning helps marine biologists to churn through millions of plankton images.

B Y  J E F F R E Y  M .  P E R K E L

When they think about big data, 
most researchers probably imagine 
genomics, neuroscience or particle 

physics. Kelly Robinson’s data challenge 
involves plankton. 

“A lot of things that we enjoy seafood-wise 
—  from fish to oysters to mussels to shrimp — 
almost everything starts their lives as plankton,” 
says Robinson, who studies marine ecosystems 
at the University of Louisiana at Lafayette. In 
photographs, they look like floating specks of 
dust, and her research involves quantifying and 
mapping their distribution and predator–prey 
interactions. The problem is, she must do so in 
millions upon millions of images.

Robinson collects data by towing a remote-
camera platform called ISIIS — the In Situ 
Ichthyoplankton Imaging System — behind a 
boat. ISIIS captures about 80 photos per second, 
or 288,000 images (660 gigabytes) per hour. For 
one project in the Straits of Florida, when Rob-
inson was a postdoc, she generated 340 million 
pictures; a colleague working in the Gulf of 
Mexico generated billions.

“You start to learn about things that you 
never thought you would learn,” Robinson says, 
“like the number of files that you can store on 
an individual computer. It’s 30 million, by the 

way, on your regular PC.” On her most recent 
cruise, Robinson sailed with 52 2-terabyte hard 
drives, which a student had to monitor and 
replace as they filled up. Someone then must 
get that collection to the university, convert the 
files to Linux formatting, and upload them to a 
server — a process that takes 24 hours per drive.

The team uses machine-learning software to 
automatically pick out and identify objects in 
the images. But the algorithms must be taught 
what to look for — this is a starfish, that is a 
prawn. Such features are relatively rare in the 
water, so finding pictures for the training set 
takes time. Over two months, Robinson and her 

team manually sorted through 2 million images 
to find enough to feed the algorithm. “It’s a little 
mind-numbing, but if you’re under the gun you 
can do it,” she says. 

Naturally, the team is looking to optimize the 
process. Working with colleagues at Oregon 
State University in Corvallis, where she was a 
postdoc, Robinson is testing whether she could 
accelerate her work by processing the images 
on multiple video card graphical processing 
units (GPUs) running in parallel. She is also 
looking into cloud computing as an alternative 
to Earth-bound clusters. 

But infrastructure goes only so far; what the 
team really needs, she says, is more people to 
crunch the numbers. Unfortunately, data scien-
tists are in high demand, and industry jobs are 
lucrative. “We have a lot of turnover,” she says. ■

Jeffrey M. Perkel is technology editor at 
Nature.

CORRECTION
The referencing in the Technology feature 
‘How to teach an old sequencer new tricks’ 
(Nature 559, 643–645; 2018) was incorrect. 
The correct version can be found online at 
at go.nature.com/2wmnhgc.

Kelly Robinson and her team scrutinize images.
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