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All major earthquakes are followed 
by smaller ones, called aftershocks, 
which can themselves be hazardous. 

The forecasting of aftershocks is an area 
of long-standing seismological interest1. It 
is receiving renewed attention2 because of 
earthquake sequences in Italy, New Zealand 
and Japan over the past decade, in which the 
first earthquake in the sequence was not the 
most destructive (Fig. 1). On page 632, DeVries 
et al.3 use machine-learning tools to take a 

fresh look at how changes in geological stress 
generated by earthquakes influence the spatial 
distribution of aftershocks. The authors’ work 
provides more-accurate forecasts of aftershock 
locations than does the standard approach4.

Deterministic earthquake prediction 
remains an elusive goal, but seismologists 
are working intently to make quantitative 
probabilistic forecasts of future earthquake 
occurrences. Prominent among the factors 
thought to affect earthquake probabilities is 
the change in stress induced by one earthquake 
at the potential initiation site of another. 

Probabilistic forecasting depends on 
well-established statistical properties of seis-
micity — the spatial and temporal distribution 
of earthquakes. Although earthquakes cluster 
in space and time, large ones are rare, which 
makes documenting the interactions between 
these earthquakes intrinsically challenging.

Large earthquakes, however, can be followed 
by thousands of aftershocks, which are indistin-
guishable from other earthquakes. Aftershocks 
occur by the same mechanism, on the same 
geological faults and under the same condi-
tions as for other earthquakes. It is therefore 
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Aftershock forecasts turn to AI 
Understanding how earthquakes interact is key to reliable earthquake forecasting. A machine-learning study reveals how 
the stress change induced by earthquakes at geological faults affects these interactions. See Letter p.632

Figure 1 | Damage caused by the 2011 Christchurch earthquake.  Large earthquakes can be followed by thousands of smaller ones, called aftershocks. In 
February 2011, an aftershock struck the city of Christchurch, New Zealand, and was more destructive than the earthquake it followed. The image shows the 
smoking ruins of the six-storey Canterbury Television building, which collapsed and caught fire in the aftershock, killing more than 100 people.
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The publication1,2 of the human genome 
sequence in 2001 was accompanied by 
optimism that a rise in the availability 

of genomic data might improve clinical treat-
ments. It was hoped that such data might one 
day enable an approach termed ‘precision 
medicine’, in which therapies are tailored to 
target the abnormalities specific to a particular 
cancer. Since then, technological advances in 
DNA-sequencing techniques, combined with 
substantially lower costs, have led to a boom 
in the sequencing of cancer samples. Given 
this progress, one might assume that the key 
genetic alterations that drive common cancers 
are already well known. However, writing in 
Cell, Takeda et al.3, Viswanathan et al.4 and 
Quigley et al.5 detail a previously unidenti-
fied type of genetic alteration that frequently 
occurs in late-stage human prostate cancer.

The Cancer Genome Atlas (TCGA) and 
the International Cancer Genome Con-
sortium (ICGC) have undertaken some of 
the largest-scale projects reported so far to 
sequence the DNA of human cancers. These 
efforts have identified many DNA alterations 
that drive cancer growth, including muta-
tions and genomic rearrangements. TCGA 
has sequenced the protein-coding regions of 
approximately 11,000 individual genomes and 
33 types of cancer (https://portal.gdc.cancer.
gov), whereas the ICGC has sequenced the 
protein-coding regions from more than 
20,000 individual genomes and 22 kinds 
of cancer (https://dcc.icgc.org). Both pro-
jects have focused mainly on sequencing the 
protein-coding regions of genes, which rep-
resent less than 2% of the entire genome. In 
the Pan Cancer Analysis of Whole Genomes 
(PCAWG) project, the ICGC and TCGA 
systematically analysed whole-genome 

reasonable to assume that understanding the 
interactions between the largest earthquake 
in a sequence (the mainshock) and its after-
shocks will enhance general understanding of 
earthquake interactions.

DeVries and colleagues studied these 
mainshock–aftershock interactions using 
a database of published distributions of 
mainshock-induced slip — the relative move-
ment of geological features on opposite sides 
of a fault. From these distributions, the authors 
calculated the stress changes induced by the 
mainshocks. They fed this information into 
an artificial-intelligence system known as an 
artificial neural network, which was trained 
to determine the likelihood that aftershocks 
would occur in a particular location on a 
spatial grid.

The authors withheld a randomly selected 
25% of the mainshock–aftershock sequences 
from the training data, and used this subset to 
validate the predictive power of their machine-
learning method. They report that the trained 
network can predict the locations of after-
shocks more accurately than can the standard 
forecasting approach, which considers only 
one aspect of the induced shift in stress, known 
as the Coulomb failure stress change4. The 
authors find that other characteristics of the 
stress change play a crucial part in triggering 
aftershocks. The paper therefore demonstrates 
how machine learning could aid research in 
seismology. 

However, for several reasons, it might be 
premature to infer that DeVries and colleagues’ 
work has led to an improved physical under-
standing of aftershock triggering. One reason 
is that the current study — and earlier studies 
of aftershock triggering — focused on static 
stress changes that occur and persist long after 
the passage of seismic waves5. But dynamic 
stress changes caused by seismic waves can also 
trigger earthquakes6. The combination of static 
and dynamic stress changes leads to a spatial 
distribution of aftershocks that differs from the 
pattern caused by static stress changes alone7.

Another reason for caution is that the authors’ 
analysis relies on factors that are fraught with 
uncertainty. Uncertainties in earthquake loca-
tions are probably small, but uncertainties in 
slip distributions, on which the stress-change 
analysis depends, are large and potentially prob-
lematic. It is well documented that estimates of 
slip made by different investigators are subject 
to substantial differences8. The inferred stress 
change, which is input to the authors’ machine-
learning algorithm, depends on the rate of 
change of these slip distributions with respect 
to position, such that slip uncertainty is ampli-
fied. This issue is more problematic close to the 
fault than it is farther away from it, but most 
aftershocks occur close to the fault.

The situation is compounded by the fact 
that slip estimates invariably assume that slip 
occurs on faults that are planar or composed 
of multiple planes. However, fault geom-
etry is known to be complex at all scales9. 

P R E C I S I O N  M E D I C I N E 

Sequence of events in 
prostate cancer
Whole-genome sequencing reveals the duplication of a regulatory region, called 
an enhancer, of the AR gene in treatment-resistant human prostate cancers. The 
finding shows the importance of analysing non-protein-coding regions of DNA. 

This complexity leads to strong, local stress 
concentrations that can trigger aftershocks10, 
but that will not be included in slip models 
that assume planar faults. This could explain 
why the authors see no evidence of a lack of 
aftershocks near faults — caused by an overall 
decrease in stress — despite the fact that this 
feature is readily apparent in situations in 
which data and circumstances allow it to be 
clearly observed11. These issues concerning 
uncertainty are not particular to the authors’ 
study, but they counsel some temperance in 
calling for new physical models to explain the 
current results.

Regardless of the physical interpretation, 
the performance of DeVries and colleagues’ 
artificial neural network is motivating. Until a 
few years ago, most statistical forecasts of after-
shocks were more accurate than were physics-
based forecasts, such as that of the authors. But 
there are now cases in which physics-based 
forecasting performs as well as purely statisti-
cal approaches12,13. The time would seem ripe 
for methods based on artificial intelligence to 
enter the fray, and the work of DeVries et al. 
has established this beachhead.

Artificial-intelligence methods have much 
to offer seismology, and solid-Earth science 
more broadly. There are societally important 
phenomena to understand that are informed 

by data sets growing rapidly in scale and scope, 
and by computational simulations growing 
rapidly in sophistication and realism. The 
application of machine-learning methods has 
the potential to extract meaning from these 
large and complex sources of information, but 
we are still in the early stages of this process. ■
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