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cachexia affects survival in cancer, if progress 
could be made to stop tissue wasting, it would 
substantially alleviate the disease burden for 
patients. ■
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A L E S S A N D R O  V E S P I G N A N I

In 1998, Watts and Strogatz1 introduced 
the ‘small-world’ model of networks, 
which describes the clustering and short 

separations of nodes found in many real-
life networks. I still vividly remember the 
discussion I had with fellow statistical physi-
cists at the time: the model was seen as sort 
of interesting, but seemed to be merely an 
exotic departure from the regular, lattice-like 
network structures we were used to. But the 
more the paper was assimilated by scientists 
from different fields, the more it became clear 
that it had deep implications for our under-
standing of dynamic behaviour and phase 
transitions in real-world phenomena ranging 

from contagion processes to information 
diffusion. It soon became apparent that the 
paper had ushered in a new era of research that 
would lead to the establishment of network 
science as a multidisciplinary field.

Before Watts and Strogatz published their 
paper, the archetypical network-generation 
algorithms were based on construction 
processes such as those described by the 
Erdös–Rényi model2. These processes are 
characterized by a lack of knowledge of the 
principles that guide the creation of connec-
tions (edges) between nodes in networks, 
and make the simple assumption that pairs 
of nodes can be connected at random with a 
given connection probability. Such a process 
generates random networks, in which the 

average path length between any two nodes 
in the network — measured as the smallest 
number of edges needed to connect the nodes 
— scales as the logarithm of the total number 
of nodes. In other words, randomness is suffi-
cient to explain the small-world phenomenon 
popularized as ‘six degrees of separation’3,4: the 
idea that everyone in the world is connected to 
everyone else through a chain of, at most, six 
mutual acquaintances.

However, random construction fell short 
of capturing the local cliquishness of nodes 
observed in real-world networks. Cliquishness 
is measured quantitatively by the clustering 
coefficient of a node, which is defined as the 
ratio of the number of links between a node’s 
neighbours and the maximum number of such 
links. In real-world networks, node clustering 
is clearly exemplified by the axiom ‘the friends 
of my friends are my friends’: the probability 
of three people being friends with each other 
in a social network, for example, is generally 
much higher than would be predicted by a 
model network constructed using the simple, 
stochastic process.

To overcome the dichotomy between 
randomness and cliquishness, Watts and 
Strogatz proposed a model whose starting 
point is a regular network that has a large 
clustering coefficient. Stochasticity is then 
introduced by allowing links to be rewired at 
random between nodes, with a fixed probabil-
ity of rewiring (p) for all links.  By tuning p, the 
model effectively interpolates between a reg-
ular lattice (p → 0) and a completely random 
network (p → 1). 

At very small p values, the resulting network 
is a regular lattice and therefore has a high 
clustering coefficient. However, even at small 
p, short cuts appear between distant nodes in 
the lattice, dramatically reducing the average 
shortest path length (Fig. 1). Watts and Stro-
gatz showed that, depending on the number of 
nodes5, it is possible to find networks that have 
a large clustering coefficient and short aver-
age distances between nodes for a broad range 
of p values, thus reconciling the small-world 
phenomenon with network cliquishness. 

Watts and Strogatz’s model was initially 
regarded simply as the explanation for six 
degrees of separation. But possibly its most 
important impact was to pave the way for 

a b

Figure 1 | The small-world network model.  In 1998, Watts and Strogatz1 described a model that 
helps to explain the structures of networks in the real world. a, They started with a regular network, 
depicted  here as nodes connected in a triangular lattice in which each node is connected to six other 
nodes. b, They then allowed links between nodes to be rewired at random, with a fixed probability 
of rewiring for all links. As the probability increases, an increasing number of short cuts (red lines) 
connect distant nodes in the network. This generates the small-world effect: all nodes in the network 
can be connected by passing along a small number of links between nodes, but neighbouring nodes 
are connected to one another, forming clustered cliques. (Adapted from Samay/Vespignani.)

In retrospect

Twenty years of 
network science 
The idea that everyone in the world is connected to everyone else by just six degrees 
of separation was explained by the ‘small-world’ network model 20 years ago. 
What seemed to be a niche finding turned out to have huge consequences.

13.	Di Sebastiano, K. M. et al. Br. J. Nutr. 109, 302–312 
(2013).

14.	Gupta, S. et al. Clin. Gastroenterol. Hepatol. 4, 
1366–1372 (2006).

15.	Kalyani, R. R., Corriere, M. & Ferrucci, L. Lancet 
Diabetes Endocrinol. 2, 819–829 (2014).

16.	Hardt, P. D. et al. Pancreatology 3, 395–402 (2003).
17.	Wagner, E. F. & Petruzzelli, M. Nature 521, 430–431 

(2015).
18.	Greco, S. H. et al. PLoS ONE 10, e0132786 (2015).
19.	Löhr, J. M., Panic, N., Vujasinovic, M. & Verbeke, C. S. 

J. Intern. Med. 283, 446–460 (2018).

The author declares competing financial and other 
interests. See go.nature.com/2sp7yeo for details.

This article was published online on 20 June 2018. 

5 2 8  |  N A T U R E  |  V O L  5 5 8  |  2 8  J U N E  2 0 1 8

NEWS & VIEWSRESEARCH

©
 
2018

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2018

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



4.	 Guare, J. Six Degrees of Separation (Vintage, 1990).
5.	 Barthélémy, M. & Amaral, L. A. N. Phys. Rev. Lett. 82, 

3180–3183 (1999).
6.	 Barabási, A.-L. & Albert, R. Science 286, 509–512 

(1999).
7.	 Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & 

Vespignani, A. Rev. Mod. Phys. 87, 925–979 (2015).
8.	 Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & 

Zhou, C. Phys. Rep. 469, 93–153 (2008).
9.	 Albert, R., Jeong, H. & Barabási, A.-L. Nature 401, 

130–131 (1999).
10.	Sporns, O., Chialvo, D. R., Kaiser, M. & Hilgetag, C. C. 

Trends Cogn. Sci. 8, 418–425 (2004). 
11.	Newman, M. E. J. SIAM Rev. 45, 167–256 (2003).
12.	Porter, M. A., Onnela, J. P. & Mucha, P. J. Not. Am. 

Math. Soc. 56, 1082–1097 (2009); go.nature.
com/2jg9dgq

13.	Fortunato, S. Phys. Rep. 486, 75–174 (2010).

This article was published online on 19 June 2018. 

studies of the effect of network structure on a 
wide range of dynamic phenomena. Another 
paper was also pivotal: in 1999, Barabási and 
Albert proposed the ‘preferential-attachment’ 
network model6, which highlighted that the 
probability distribution describing the number 
of connections that form between nodes in 
real-world networks is often characterized 
by ‘heavy-tailed’ distributions, instead of the 
Poisson distribution predicted by random 
networks. The broad spectrum of emergent 
behaviour and phase transitions encapsulated 
in networks that have clustered connectedness 
(as in Watts and Strogatz’s model) and hetero-
geneous connectedness (as in the preferential-
attachment model) attracted the attention of 
scientists from many fields. 

A string of discoveries followed, highlighting 
how the complex structure of such networks 
underpins real-world systems, with implica-
tions for network robustness, the spreading 
of epidemics, information flow and the syn-
chronization of collective behaviour across 
networks7,8. For example, the small-world con-
nectivity pattern proved to be the key to under-
standing the structure of the World Wide Web9 
and how anatomical and functional areas of the 
brain communicate with each other10. Other 
structural properties of networks came under 
the microscope soon after11–13, such as modu-
larity and the concept of structural motifs, all 
of which helped scientists to characterize and 
understand the architecture of living and arti-
ficial systems, from subcellular networks to 
ecosystems and the Internet.  

The current generation of network research 
cross-fertilizes areas that benefit from unprec-
edented computing power, big data sets and 
new computational modelling techniques, and 
thus provides a bridge between the dynamics 
of individual nodes and the emergent proper-
ties of macroscopic networks. But the imme-
diacy and the simplicity of the small-world and 
preferential-attachment models still under-
pin our understanding of network topology. 
Indeed, the relevance of these models to differ-
ent areas of science laid the foundation of the 
multidisciplinary field now known as network 
science. 

Integrating knowledge and methodologies 
from fields as disparate as the social sciences, 
physics, biology, computer science and applied 
mathematics was not easy. It took several years 
to find common ground, agree on definitions 
and reconcile and appreciate the different 
approaches that each field had adopted to 
study networks. This is still a work in progress, 
presenting all the difficulties and traps inher-
ent in interdisciplinary work. However, in the 
past 20 years a vibrant network-science com-
munity has emerged, with its own prestigious 
journals, research institutes and conferences 
attended by thousands of scientists.

By the 20th anniversary of the paper, more 
than 18,000 papers have cited the model, which 
is now considered to be one of the benchmark 
network topologies. Watts and Strogatz closed 

their paper by saying: “We hope that our work 
will stimulate further studies of small-world 
networks.” Perhaps no statement has ever been 
more prophetic. ■

Alessandro Vespignani is in the Network 
Science Institute and the Laboratory for the 
Modeling of Biological and Sociotechnical 
Systems, Northeastern University, Boston, 
Massachusetts 02115, USA.
e-mail: a.vespignani@northeastern.edu  

1.	 Watts, D. J. & Strogatz, S. H. Nature 393, 440–442 
(1998).

2.	 Erdös, P. & Rényi, A. Publ. Math. 6, 290–297 (1959).
3.	 Milgram, S. Psychol. Today 1, 61–67 (1967).

M I C H A E L  J .  C A P P E R  &  D A N I E L  W A C K E R

About one-third of all drugs, including 
opioid painkillers, antihistamines and 
many antipsychotics, target members 

of a family of proteins called G-protein-
coupled receptors (GPCRs)1. This reflects the 
fact that GPCRs are important in almost all 
aspects of human physiology, and suggests 
that many more of them will be promising 
drug targets for numerous diseases. GPCRs 
span the cell membrane and convert myriad 
extracellular signals, including neurotrans-
mitter molecules, hormones, and even light, 
into a cellular response by activating cellular 
G proteins and other transducer proteins. 
Four papers2–5 in this issue help to unravel the 
mystery of how GPCRs selectively activate a 
particular group of G proteins known as Gi/o, 
and provide clues that might aid the design of 
improved GPCR-targeting drugs.

Although more than 800 GPCRs are encoded 
in the human genome, they couple to only a 
small number of intracellular signal trans-
ducers, including 16 Gα proteins6. The latter 
proteins assemble with Gβ and Gγ proteins to 
form heterotrimeric G proteins. The G-protein 
complex disassembles on activation by GPCRs, 
whereupon the various subunits activate differ-
ent signalling pathways. For instance, stimu-
latory Gα proteins (known as Gs) increase 
cellular levels of cyclic AMP molecules, which 
regulate various cellular processes. Structures 
of Gs-bound GPCRs have been reported7,8 that 
have begun to elucidate the general activa-
tion mechanism of Gα proteins, and of Gs in 

particular. But much less is known about how 
GPCRs selectively activate inhibitory Gα pro-
teins, which include Gi1, Gi2, Gi3 and Go, and are 
collectively known as Gi/o.

The four papers in this issue report structures 
of Gi/o-bound GPCRs obtained using cryo
electron microscopy: Koehl et al.2 (page 547) 
report the structure of the µ-opioid receptor 
bound to Gi1; Draper-Joyce et al.3 (page 559) 
describe the adenosine A1 receptor in complex 
with Gi2; García-Nafría et al.4 (page 620) report 
the 5HT1B receptor bound to Go; and Kang 
et al.5 (page 553) reveal the structure of the light 
receptor rhodopsin in complex with Gi1. The 
G-protein activation cycle involves the bind-
ing and release of nucleotides to and from the 
G proteins, and all of the reported structures 
capture the receptors bound to the nucleotide-
free state of their respective G proteins. 

In some respects, the four structures are 
similar to those of the previously published 
GPCR–Gs complexes7,8, probably because 
Gs- and Gi/o-containing complexes have the 
same overall conformation at the stage of the 
G-protein activation cycle captured by the 
structures. Nevertheless, the Gi/o-containing 
structures reveal striking differences at the 
receptor–G-protein interface when com-
pared with the Gs-containing structures. For 
example, there are no interactions between 
the receptors and the Gβ subunits in the 
Gi/o-containing structures.

The four structures uncover several key 
interactions at the GPCR–Gi/o interface medi-
ated by the α5 helix — an α-helix structure 
in the carboxy terminus of Gα subunits. It is 

S T R U C T U R A L  B I O L O G Y

A complex story of 
receptor signalling
G-protein-coupled receptors activate different G-protein types to trigger 
divergent signalling pathways. Four structures of receptor–G-protein complexes 
shed light on this selectivity. See Articles p.547, p.553 & p.559 & Letter p.620 
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