
50 Years Ago
Reading aids for the blind have 
so far involved the use of intact 
sensory pathways and have 
progressed little beyond Braille 
and tape-recorded “talking-books”. 
Both these systems are quite 
expensive … and both are slow in 
terms of information transfer to the 
reader … At a recent meeting of the 
Physiological Society, Brindley and 
Lewin demonstrated a device for 
stimulating the visual cortex of man 
directly … Essentially it consists 
of an array of radio receivers, 
encapsulated in silicone rubber and 
screwed to the skull … Activation 
of a receiver stimulated the cortex: 
transmission was in the form of 
a train of short (200 μs) pulses … 
it does at least seem feasible to 
transmit visual information directly 
to the central visual pathways of the 
recently blind.
From Nature 8 June 1968

100 Years Ago
It happened last week that about 
1 lb. of fresh lamb was put into 
an oven at night in order that it 
might be cooked by morning on 
the “hay-box” principle. It was 
in a casserole, with a little water. 
Similar treatment in the same oven 
on previous occasions had been 
very successful. At about 5 a.m. 
the casserole was examined, and 
the broth was found to be very well 
tasted, and the whole smelt fresh 
and good, but the meat when tested 
with a fork was not tender, and 
the fat (of which there was a good 
deal) was entirely unmelted. The 
casserole was returned to the oven 
(then quite cool) and taken out 
again after breakfast. The contents 
were then found to be smelling 
most offensively, as if extremely 
“high”. The fat was melted. The 
meat and broth were judged quite 
unfit for human food. I wonder if 
any of your readers would explain 
this curious development.
From Nature 6 June 1918

are generated by multiple thalamic inputs 
that have temporally different responses to 
the stimulus (Fig. 1). Thalamic inputs that 
respond slowly to visual stimuli generate slow 
responses in cortical regions, whereas those 
responding faster generate fast responses. 

Lien and Scanziani’s results, taken together 
with previous work3–10, raise the interesting pos-
sibility that cortical direction selectivity is gen-
erated through a common mechanism — the 
convergence of temporally diverse thalamic 
inputs — in rodents, cats and primates. But as 
with all research, some questions remain open.

For instance, the authors focus their study 
on the middle layers of the visual cortex, 
which receive the bulk of the thalamic input11. 
As Lien and Scanziani show, many thalamic 
inputs in these middle cortical layers are not 
direction selective, but their combined activity 
is. It remains unclear whether thalamic inputs 
that target other cortical layers (or serve other 
functions) can encode direction selectivity 
through different mechanisms. For example, 
neurons in the superficial layers of the cor-
tex might derive their direction selectivity 
from thalamic neurons that are themselves 
direction selective12.

It is also known that thalamic inputs to the 
visual cortex are arranged by their receptive-
field position — inputs that have receptive fields 
close to one another in the field of view are clus-
tered together. However, it is not yet known 
whether the thalamic inputs are also arranged 
according to their temporal properties. If so, this 
could explain why spatial position and direction 
preference tend to change together in different 

neurons across the visual–cortical map13.
Whatever the answers are, it is becoming 

increasingly clear that the visual cortex gen-
erates stimulus selectivity, such as prefer-
ences for direction and orientation, through 
thalamo–cortical convergence. Lien and 
Scanziani’s work shows that this mechanism 
is better preserved across mammals than was 
previously thought. ■
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E N G I N E E R I N G

Two artificial synapses 
are better than one
Emerging nanoelectronic devices could revolutionize artificial neural networks, but 
their hardware implementations lag behind those of their software counterparts. An 
approach has been developed that tips the scales in their favour. See Article p.60

G I N A  C .  A D A M

Inspired by the brain’s neural networks, 
scientists have for decades tried to 
construct electronic circuits that can 

process large amounts of data. However, it 
has been difficult to achieve energy-efficient 
implementations of artificial neurons and 
synapses (connections between neurons). 
On page 60, Ambrogio et al.1 report an arti-
ficial neural network containing more than 
200,000 synapses that can classify complex 
collections of images. The authors’ work dem-
onstrates that hardware-based neural networks 
that use emerging nanoelectronic devices 

can perform as well as can software-based 
networks running on ordinary computers, 
while consuming much less power.

Artificial neural networks are not 
programmed in the same way as conventional 
computers. Just as humans learn from experi-
ence, these networks acquire their functions 
from data obtained during a training process. 
Image classification, which involves learning 
and memory, requires thousands of artificial 
synapses. The states (electrical properties) of 
these synapses need to be programmed quickly 
and then retained for future network operation.

Nanoscale synaptic devices that have 
programmable electrical resistance, such 
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as phase-change-memory (PCM) devices, 
show promise because of their small physi-
cal size and excellent retention properties. 
PCM devices contain a material known as a 
chalcogenide glass, which can switch revers-
ibly between an amorphous phase (of high 
resistance) and a crystalline phase (of low 
resistance). The device’s resistance state is pro-
grammed by crystallizing part of the material 
using local heating produced by an applied 
voltage. This state is retained long after the 
voltage has been removed, and further pro-
gramming can be achieved by crystallizing 
other parts of the material.

Unfortunately, PCM devices can be 
programmed in only one direction: from high 
to low resistance, by changing from low to 
high crystallinity. To achieve the desired resist-
ance state with good precision, sequences of 
hundreds of voltage pulses are required. 
If the desired state is overshot, the chalco-
genide glass must be completely reset to 
the amorphous phase and the step-by-step 
programming restarted. This shortcoming, 
combined with variations between devices 
caused by the manufacturing process, can slow 
or even prevent network training, as previous 
work by the group that performed the current 
study has shown2. As a result, the prototype 
networks that have been constructed using 
these devices3,4 are impractical and have much 
lower image-classification accuracies than do 
software-based networks.

The breakthrough of Ambrogio and 
colleagues’ work lies in a two-tier, bio-inspired 
approach. In biological neural networks, short-
term changes in the states of synapses support 
a variety of computations, whereas long-term 

changes provide a platform for learning 
and memory5. For this reason, the authors’ 
artificial neural network uses synaptic ‘cells’ 
that contain two types of synapse: short-term 
and long-term (Fig. 1).

The short-term synapses are used regularly 
during network training. They require only 
brief state retention, but fast and precise pro-
gramming to the desired state. Such features 
are provided by an electronic switch called a 
transistor, which has a capacitor (a device for 
storing electric charge) attached to one of its 
electrodes, known as the gate6. The transistor’s 
state is programmed by a fast voltage pulse 
applied to the gate. The capacitor maintains 
this voltage for a few milliseconds, providing 
brief state retention.

After the network has been trained on 
several thousand images and the short-term 
synapses have changed states substantially, 
the synaptic states are written into long-term 
synapses. The cycle is then repeated until all 
of the training images have been presented to 
the network. The long-term synapses are used 
for network operation after training is com-
plete. They consist of PCM devices that have 
state-retention times of years, at the expense of 
tedious, energy-intensive programming.

An advantage of this technique is that the 
transfer of states from short- to long-term 
synapses can be done in electronic-circuit 
blocks separate from the network, while the 
network carries out other tasks. Moreover, 
although the authors’ synaptic cells are more 
complicated in practice — containing one 
capacitor, two PCM devices and five transistors 
— they are still about half the size of artificial 
synapses used in other networks6 .

Ambrogio et al. tested their synaptic-cell 
approach using a fairly complex artificial 
neural network containing multiple layers of 
neurons and more than 200,000 PCM devices. 
The authors carried out classification tasks 
using three standard sets of images: greyscale 
handwritten numbers from the MNIST data-
base7, and colour images from the CIFAR-10 
and CIFAR-100 databases8. The accuracies 
obtained were 98%, 88% and 68%, respectively. 
These results are strikingly similar to those 
obtained using TensorFlow, a leading neural-
network software (see www.tensorflow.org).

Despite these impressive findings, a key 
limitation of the work is that only the PCM 
devices were actually fabricated; the other 
components of the synaptic cells and the 
neurons were simulated computationally. 
The authors took care to use accurate models 
that consider variations between transistors, 
and they proposed a method to minimize the 
impact of such variability on synaptic-cell per-
formance. Most importantly, they carried out 
a detailed power assessment, and found that 
their proposed technology would consume 
about 100 times less power than current state-
of-the-art networks, while providing a similar 
classification performance. Nevertheless, only 
a working hardware prototype will convince 
industry of the technology’s performance 
and low-power advantages. Furthermore, 
the estimated power consumption is still a far 
cry from that of biological neural networks, 
leaving plenty of room for improvement.

However, Ambrogio and colleagues’ work 
is more than a crucial stepping stone to the 
integration of PCM devices in neural-network 
hardware. It will also inspire device research, 
because it creates a need for nanoscale 
short-term synapses to replace the bulky 
transistor–capacitor ones. A wall in emerg-
ing memory technologies has been breached 
— networks based on these devices can work 
as well as do their software counterparts. This 
finding suggests that advances in artificial 
intelligence will not only continue, but also be 
accelerated by emerging hardware. ■
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Figure 1 | An artificial neural network containing two types of synapse.  Ambrogio et al.1 report a 
hardware-based artificial neural network that is trained to classify complex images, such as handwritten 
numbers, with an accuracy similar to that of a software-based network. The network consists of artificial 
neurons linked by wires to two types of artificial synapse (connections between neurons). Short-term 
synapses (which can retain alterations in their synaptic state for milliseconds) are used regularly during 
network training, whereas long-term synapses (with state retention of years) are used mainly for memory. 
The long-term synapses are physical devices, whereas the neurons and short-term synapses are simulated 
computationally (indicated by hatching).
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