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Four years ago, scientists from Google 
showed up on neuroscientist Steve 
Finkbeiner’s doorstep. The researchers 

were based at Google Accelerated Science, a 
research division in Mountain View, California, 
that aims to use Google technologies to speed  
scientific discovery. They were interested in 
applying ‘deep-learning’ approaches to the moun-
tains of imaging data generated by Finkbeiner’s 
team at the Gladstone Institute of Neurological  
Disease in San Francisco, also in California.

Deep-learning algorithms take raw features 
from an extremely large, annotated data set, 
such as a collection of images or genomes, and 
use them to create a predictive tool based on 
patterns buried inside. Once trained, the algo-
rithms can apply that training to analyse other 
data, sometimes from wildly different sources.

The technique can be used to “tackle really 
hard, tough, complicated problems, and be 
able to see structure in data — amounts of data 
that are just too big and too complex for the 
human brain to comprehend”, Finkbeiner says.

He and his team produce reams of data using 
a high-throughput imaging strategy known as 
robotic microscopy, which they had developed 
for studying brain cells. But the team couldn’t 
analyse its data at the speed it acquired them, 
so Finkbeiner welcomed the opportunity to 
collaborate.

“I can’t honestly say at the time that I had 
a clear grasp of what questions might be 
addressed with deep learning, but I knew that 
we were generating data at about twice to three 
times the rate we could analyse it,” he says. 

Today, those efforts are beginning to pay off. 
Finkbeiner’s team, with scientists at Google, 
trained a deep algorithm with two sets of cells, 
one artificially labelled to highlight features that 
scientists can’t normally see, the other unla-
belled. When they later exposed the algorithm 
to images of unlabelled cells that it had never 
seen before, Finkbeiner says, “it was astonish-
ingly good at predicting what the labels should 
be for those images”. A publication detailing 
that work is now in the press. 

Finkbeiner’s success highlights how deep 
learning, one of the most promising branches 

of artificial intelligence (AI), is making inroads 
in biology. The algorithms are already infil-
trating modern life in smartphones, smart 
speakers and self-driving cars. In biology, 
deep-learning algorithms dive into data in 
ways that humans can’t, detecting features 
that might otherwise be impossible to catch. 
Researchers are using the algorithms to classify 
cellular images, make genomic connections, 
advance drug discovery and even find links 
across different data types, from genomics and 
imaging to electronic medical records. 

More than 440 articles on the bioRxiv pre-
print server discuss deep learning; PubMed 
lists more than 700 references in 2017. And 
the tools are on the cusp of becoming widely 
available to biologists and clinical researchers. 
But researchers face challenges in understand-
ing just what these algorithms are doing, and 
ensuring that they don’t lead users astray. 

TRAINING SMART ALGORITHMS
Deep-learning algorithms (see ‘Deep 
thoughts’) rely on neural networks, a compu-
tational model first proposed in the 1940s, 

A popular artificial-intelligence method provides a powerful tool for surveying and classifying 
biological data. But for the uninitiated, the technology poses significant difficulties.

DEEP LEARNING FOR BIOLOGY  

The brain’s neural network has long inspired artificial-intelligence researchers. 
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in which layers of neuron-like nodes mimic 
how human brains analyse information. Until 
about five years ago, machine-learning algo-
rithms based on neural networks relied on 
researchers to process the raw information into 
a more meaningful form before feeding it into 
the computational models, says Casey Greene, 
a computational biologist at the University of 
Pennsylvania in Philadelphia. But the explosion 
in the size of data sets — from sources such as 
smartphone snapshots or large-scale genomic 
sequencing — and algorithmic innovations 
have now made it possible for humans to take a 
step back. This advance in machine learning — 
the ‘deep’ part — forces the computers, not their 
human programmers, to find the meaningful 
relationships embedded in pixels and bases. 
And as the layers in the neural network filter 
and sort information, they also communicate 
with each other, allowing each layer to refine 
the output from the previous one.

Eventually, this process allows a trained 
algorithm to analyse a new image and correctly 
identify it as, for example, Charles Darwin or a 
diseased cell. But as researchers distance them-
selves from the algorithms, they can no longer 
control the classification process or even explain 
precisely what the software is doing. Although 
these deep-learning networks can be stunningly 
accurate at making predictions, Finkbeiner 
says, “it’s still challenging sometimes to figure 
out what it is the network sees that enables it to 
make such a good prediction”.

Still, many subdisciplines of biology, includ-
ing imaging, are reaping the rewards of those 
predictions. A decade ago, software for auto-
mated biological-image analysis focused 
on measuring single parameters in a set of 
images. For example, in 2005, Anne Carpenter, 

a computational biologist at the Broad Insti-
tute of MIT and Harvard in Cambridge, Mas-
sachusetts, released an open-source software 
package called CellProfiler to help biologists 
to quantitatively measure individual features: 
the number of fluorescent cells in a microscopy 
field, for example, or the length of a zebrafish. 

But deep learning is allowing her team to go 
further. “We’ve been shifting towards measur-
ing things that biologists don’t realize they want 
to measure out of images,” she says. Recording 
and combining visual features such as DNA 
staining, organelle texture and the quality of 
empty spaces in a cell can produce thousands 
of ‘features’, any one of which can reveal fresh 
insights. The current version of CellProfiler 
includes some deep-learning elements, and her 
team expects to add more-sophisticated deep-
learning tools in the next year.

“Most people have a hard time wrapping 
their heads around this,” Carpenter says, “but 
there’s just as much information, in fact maybe 
more, in a single image of cells as there is in a 
transcriptomic analysis of a cell population.” 

That type of processing allows Carpenter’s 
team to take a less supervised approach to 
translating cell images into disease-associated 
phenotypes — and to capitalize on it. Carpen-
ter is a scientific adviser to Recursion Phar-
maceuticals in Salt Lake City, Utah, which is 
using its deep-learning tools to target rare, 
single-gene disorders for drug development.

MINING GENOMIC DATA
When it comes to deep learning, not just any 
data will do. The method often requires massive, 
well-annotated data sets. Imaging data provide a 
natural fit, but so, too, do genomic data.

One biotech firm that is using such data is 

Verily Life Sciences (formerly Google Life 
Sciences) in San Francisco. Researchers at 
Verily — a subsidiary of Google’s parent com-
pany, Alphabet — and Google have developed 
a deep-learning tool that identifies a com-
mon type of genetic variation, called single-
nucleotide polymorphisms, more accurately 
than conventional tools. Called DeepVariant, 
the software translates genomic information 
into image-like representations, which are 
then analysed as images (see ‘Tools for deep 
diving’). Mark DePristo, who heads deep-
learning-based genomic research at Google, 
expects DeepVariant to be particularly useful 
for researchers studying organisms outside the 
mainstream — those with low-quality reference 
genomes and high error rates in identifying 
genetic variants. Working with DeepVariant in 
plants, his colleague Ryan Poplin has achieved 
error rates closer to 2% than the more-typical 
20% of other approaches.

Brendan Frey, chief executive of the Cana-
dian company Deep Genomics in Toronto, 
also focuses on genomic data, but with the 
goal of predicting and treating disease. Frey’s 
academic team at the University of Toronto 
developed algorithms trained on genomic and 
transcriptomic data from healthy cells. Those 
algorithms built predictive models of RNA-
processing events such as splicing, transcrip-
tion and polyadenylation within those data. 
When applied to clinical data, the algorithms 
were able to identify mutations and flag them as 
pathogenic, Frey says, even though they’d never 
seen clinical data. At Deep Genomics, Frey’s 
team is using the same tools to identify and 
target the disease mechanisms that the software 
uncovered, to develop therapies derived from 
short nucleic-acid sequences.

Another discipline with massive data sets 
that are amenable to deep learning is drug 
discovery. Here, deep-learning algorithms are 
helping to solve categorization challenges, sift-
ing through such molecular features as shape 
and hydrogen bonding to identify criteria 
on which to rank those potential drugs. For 
instance, Atomwise, a biotech company based 
in San Francisco, has developed algorithms that 
convert molecules into grids of 3D pixels, called 
voxels. This representation allows the company 
to account for the 3D structure of proteins and 
small molecules with atomic precision, model-
ling features such as the geometries of carbon 
atoms. Those features are then translated into 
mathematical vectors that the algorithm can 
use to predict which small molecules are likely 
to interact with a given protein, says Abraham 
Heifets, the company’s chief executive. “A lot of 
the work we do is for [protein] targets with no 
known binders,” he says.

Atomwise is using this strategy to power 
its new AI-driven molecular-screening pro-
gramme, which scans a library of 10 million 
compounds to provide academic researchers 
with up to 72 potential small-molecule binders 
for their protein of interest. 

Deep-learning tools are evolving rapidly, 
and labs will need dedicated computational 
expertise, collaborations or both to take 
advantage of them.

First, take a colleague with deep-learning 
expertise out to lunch and ask whether 
the strategy might be useful, advises Steve 
Finkbeiner, a neuroscientist at the Gladstone 
Institutes in San Francisco, California. 
With some data sets, such as imaging 
data, an off-the-shelf program might work; 
for more complicated projects, consider 
a collaborator, he says. Workshops and 
meetings can provide training opportunities. 

Access to cloud-computing resources 
means that researchers might not need 
an on-site computer cluster to use deep 
learning — they can run the computation 
elsewhere. Google’s TensorFlow, an 
open-source platform for building deep-
learning algorithms, is available on the 

software-sharing site GitHub, as is an open-
source version of DeepVariant, a tool for 
accurately identifying genetic variation.

Google Accelerated Science, a Google 
research division based in Mountain View, 
California, collaborates with a range of 
scientists, including biologists, says Michelle 
Dimon, one of its research scientists. 
Projects require a compelling biological 
question, large amounts of high-quality, 
labelled data, and a challenge that will allow 
the company’s machine-learning experts to 
make unique computational contributions 
to the field, Dimon says. 

Those wishing to get up to speed on 
deep learning should check out the ‘deep 
review’, a comprehensive, crowdsourced 
review led by computational biologist Casey 
Greene of the University of Pennsylvania 
in Philadelphia (T. Ching et al. Preprint at 
bioRxiv http://doi.org/gbpvh5; 2018). S.W.

Tools for deep diving

MACHINE LEARNINGTECHNOLOGY
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E DEEP THOUGHTS
Deep-learning algorithms take many forms. Steve Finkbeiner’s lab used a convolutional neural network (CNN) 
such as this one to identify, with high accuracy, dead neurons in a population of live and dead cells. 

The network is trained using 
several hundred thousand 
annotated images of live and 
dead cells.

Over multiple iterations, the network discovers patterns in the data 
that can distinguish live from dead cells. Convolutional layers 
identify structural features of the images, which are integrated in 
fully connected layers.

Challenged with 
unlabelled images, the 
network assigns each 
cell as alive or dead 
with high accuracy. 

Live

Dead

INPUT TRAINING AI

APPLICATION

Convolutional layers Fully connected layers

Dead

Live

Live

New
image

Classi�er 

Images of neurons

Trained
CNN

Combining layers of 
di�erent structure lets 
the network adapt to 
recognize images of 
varying type and clarity.

Deep-learning tools could also help research-
ers to stratify disease types, understand disease 
subpopulations, find new treatments and match 
them with the appropriate patients for clinical 
testing and treatment. Finkbeiner, for instance, 
is part of a consortium called Answer ALS, an 
effort to combine a range of data — genomics, 
transcriptomics, epigenomics, proteomics, 
imaging and even pluripotent stem-cell biology 
— from 1,000 people with the neurodegenera-
tive disease amyotrophic lateral sclerosis (also 
called motor neuron disease). “For the first 
time, we’ll have a data set where we can apply 
deep learning and look at whether deep learning 
can uncover a relationship between the things 
we can measure in a dish around a cell, and 
what’s happening to that patient,” he says. 

CHALLENGES AND CAUTIONS
For all its promise, deep learning poses signifi-
cant challenges, researchers warn. As with any 
computational-biology technique, the results 
that arise from algorithms are only as good 
as the data that go in. Overfitting a model to 
its training data is also a concern. In addition, 
for deep learning, the criteria for data quantity 
and quality are often more rigorous than some 
experimental biologists might expect. 

Deep-learning algorithms have required 
extremely large data sets that are well anno-
tated so that the algorithms can learn to distin-
guish features and categorize patterns. Larger, 
clearly labelled data sets — with millions of 

data points representing different experi-
mental and physiological conditions — give 
researchers the most flexibility for training an 
algorithm. Finkbeiner notes that algorithm 
training in his work improves significantly 
after about 15,000 examples. Those high-
quality ‘ground truth’ data can be exceptionally 
hard to come by, says Carpenter. 

To circumvent this challenge, researchers 
have been working on ways to train more with 
less data. Advances in the underlying algo-
rithms are allowing the neural networks to use 
data much more efficiently, Carpenter says, 
enabling training on just a handful of images 
for some applications. Scientists can also exploit 
transfer learning, the ability of neural networks 
to apply classification prowess acquired from 
one data type to another type. For example, 
Finkbeiner’s team has developed an algorithm 
that it initially taught to predict cell death on 
the basis of morphology changes. Although the 
researchers trained it to study images of rodent 
cells, it achieved 90% accuracy the first time it 
was exposed to images of human cells, improv-
ing to 99% as it gained experience. 

For some of its biological image-recognition 
work, Google Accelerated Science uses algo-
rithms that were initially trained on hundreds 
of millions of consumer images mined from 
the Internet. Researchers then refine that train-
ing, using as few as several hundred biological 
images similar to the ones they wish to study. 

Another challenge with deep learning is that 

the computers are both unintelligent and lazy, 
notes Michelle Dimon, a research scientist at 
Google Accelerated Science. They lack the 
judgement to distinguish biologically relevant 
differences from normal variation. “The com-
puter is shockingly good at finding batch varia-
tion,” she notes. As a result, obtaining data that 
will be fed into a deep-learning algorithm often 
means applying a high bar for experimental 
design and controls. Google Accelerated Sci-
ence requires researchers to place controls 
randomly on cell-culture plates to account for 
subtle environmental factors such as incubator 
temperature, and to use twice as many controls 
as a biologist might otherwise run. “We make 
it hard to pipette,” Dimon quips. 

This hazard underscores the importance 
of biologists and computer scientists working 
together to design experiments that incorpo-
rate deep learning, Dimon says. And that care-
ful design has become even more important 
with one of Google’s latest projects: Contour, 
a strategy for clustering cellular-imaging data 
in ways that highlight trends (such as dose 
responses) instead of putting them into spe-
cific categories (such as alive or dead). 

Although deep-learning algorithms can eval-
uate data without human preconceptions and 
filters, Greene cautions, that doesn’t mean they 
are unbiased. Training data can be skewed — as 
happens, for example, when genomic data only 
from northern Europeans are used. Deep-learn-
ing algorithms trained on such data will acquire 
embedded biases and reflect them in their pre-
dictions, which could in turn lead to unequal 
patient care. If humans help to validate these 
predictions, that provides a potential check on 
the problem. But such concerns are troubling if 
a computer alone is left to make key decisions. 
“Thinking of these methods as a way to aug-
ment humans is better than thinking of these 
methods as replacing humans,” Greene says.

And then there’s the challenge of under-
standing exactly how these algorithms are 
building the characteristics, or features, that 
they use to classify data in the first place. Com-
puter scientists are attacking this question by 
changing or shuffling individual features in a 
model and then examining how those tweaks 
change the accuracy of predictions, says Polina 
Mamoshina, a research scientist at Insilico 
Medicine in Baltimore, Maryland, which uses 
deep learning to improve drug discovery. But 
different neural networks working on the same 
problem won’t approach it in the same way, 
Greene cautions. Researchers are increasingly 
focusing on algorithms that make both accu-
rate and explainable predictions, he says, but 
for now the systems remain black boxes.

“I  don’t  think highly explainable 
deep-learning models are going to come on 
the scene in 2018, though I’d love to be wrong,” 
Greene says. ■

Sarah Webb is a freelance writer in 
Chattanooga, Tennessee.
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CORRECTION
The Technology feature ‘Deep learning 
for biology’ (Nature 554, 555–557; 2018) 
erroneously affiliated Mark DePristo at Verily 
Life Sciences. He is, in fact, at Google. Also, 
the DeepVariant tool was developed jointly 
by Verily and Google.
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