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Database assembly and analysis 

We assembled a comprehensive database of 256 targeted protein degraders (TPD) across all research, 
preclinical, clinical development, and marketed assets as of September 2024. 
 
Core source. We compiled our initial set of assets using the EvaluatePharma database. To identify relevant 
assets, we filtered the database based on keywords (“degrader”, “PROteolysis Targeting Chimera”, 
“PROTAC”, “BiDAC”, “immunomodulatory drug”, “IMiD”, “Cereblon E3 ligase modulatory drugs”, “CELMoD”, 
“SERD”, “molecular glue”, variations) in the “Mechanism of Action” or the “Pharmaceutical Class” columns in 
the overall EvaluatePharma R&D pipeline database. 
 
Validation. We manually cross-checked the resulting database against company websites to classify the 
mechanism as TPD, resulting in the removal of ~20 assets misclassified as TPDs (such as inhibitors, agonists, 
suppressors). To verify that our list was up to date, we scanned recent press releases, conference 
presentations, academic publications, and company websites using the same TPD keywords. This scan 
resulted in the addition of two assets that had been recently progressed into the clinic, and the removal of 
six assets that had been recently discontinued. Given the capture biases of EvaluatePharma, we anticipate 
lower coverage of research, preclinical, and ex-US/EU assets. 
 
Technology. For assets classified as TPDs, we classified them based on technology, into current-generation, 
next-generation, and not specified. Current technologies are: molecular glue (inclusive of IMiDs and 
CELMoDs); heterobifunctional degrader (inclusive of small-molecule heterobifunctional degraders that 
directly recruit a ubiquitously expressed E3 ligase, e.g. PROTACs); selective estrogen receptor degrader 
(SERD). Next-generation technologies in the pipeline are: degrader–antibody conjugate (DAC); molecular 
degrader of extracellular protein (MoDE); chaperone-mediated (CHAMP); autophagy (AUTAC). Note that 
estrogen receptor degraders are classified as SERDs versus heterobifunctional degraders based on molecular 
structure and mechanism; for example, elacestrant is classified as a SERD, while vepdegestrant is classified 
as a  heterobifunctional degrader. Also note that three heterobifunctional “autophagy stimulants” with 
undisclosed structures are classified as AUTACs given comparison between program initiation and the state 
of autophagy research, but may be similar autophagy technologies (such as ATTEC). 
 
Stage of development. “Approved” assets are currently approved. “Clinic” assets are currently in phase I-III 
clinical trials as established using ClinicalTrials.gov and/or the company website. “Research” assets are 
currently in active research or preclinical development, confirmed using press releases and/or the company 
website. 
 
Therapeutic area. For marketed assets, we manually the confirmed therapeutic area using approval press 
releases and drug inserts. For clinical assets, we manually confirmed therapeutic area using ClinicalTrials.gov 
and/or the company website; if several clinical trials for an asset existed, the most advanced trial was used 
to determine therapeutic area. For research and preclinical assets, we extracted the therapeutic area from 
the EvaluatePharma database. Therapeutic areas were consolidated into the three categories with the 
highest number of assets (cancer, neurology and immunology), then “other,” inclusive of urinary tract, 
infections, respiratory, skin, diabetes, gastrointestinal, musculoskeletal, hepatic, blood, cardiovascular, 
urinary tract, and miscellaneous (each with 1–5 assets). 
 
Target. For marketed assets, we manually confirmed the target protein using approval press releases and 
drug inserts. For clinical assets, we manually confirmed the target protein using ClinicalTrials.gov and/or the 
company website. For research and preclinical assets, target proteins were determined based on manual 
inspection of key words in the “Mechanism of Action” and “Pharmaceutical Class” fields, such as SMARCA2 
degrader, alpha-synuclein (SNCA) degrader, supplemented with company websites, press releases, and 
Citeline. 
 



Druggability of target. Classically druggable targets are well-studied, with existing traditional drugs (such as 
small molecules and monoclonal antibodies), and are typically an enzyme or receptor with a druggable 
pocket (such as the estrogen receptor, androgen receptor, BTK). Classically undruggable targets have no 
approved, robust small-molecule/monoclonal antibody drug that targets them. The vast majority of these 
are targets with no approved traditional drugs, but this category also includes a handful of difficult-to-drug 
targets that have approved traditional drugs with limited scope; for example, CDK4 cannot be targeted 
selectively by existing inhibitors jointly targeting CDK4 and CDK6 and only G12-mutant-KRAS can be targeted 
by approved inhibitors. Undruggable targets generally are proteins with non-enzymatic activity (such as 
MYC, STAT3, Ikaros), lacking druggable pockets (such as Tau, KRAS, GSPT1, SMARCA2), involved in complex 
systems of protein–protein interactions (such as NLRP3, IKZF2, ARID1B), or sharing domains with other 
proteins that complicate selectivity (such as Wee1, SCNA, BRD4/9, CDK2/4/9/12). For assets that degrade 
multiple targets (such as many molecular glues), the target was considered classically undruggable if any of 
the targets are classically undruggable.  
 
Assessment of next-generation technology. We evaluated a subset of next-generation TPD technologies 
across academic publications, pharmaceutical/biotech research programs, and clinical trials. We selected a 
representative set of possible developments across innovations in pathway, delivery, ligands, or activation, 
with a bias towards assets that were more developed (that is, more citations in the literature, or more 
activity in industry). Evaluation of the profile of different technologies is based on review of the literature 
(with more weight placed on advanced studies such as in vivo studies when available) and, when no clear 
data was available, the general properties of the class (for example, small molecules, peptides and 
antibodies). 
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Supplementary Fig. 1 | Comparison of targeted protein degradation to other modalities. High-level 
comparison of relative strengths (indicated by a +) of current* targeted protein degradation technologies 
(molecular glues, heterobifunctional degraders, selective estrogen receptor degraders) to traditional 
modalities (small-molecule inhibitor, monoclonal antibody) and similar new modalities (RNA interference).  
 
 



 
 
Supplementary Fig. 2 | Summary mechanism of current TPD technologies. Schematic representation of 
transfer of ubiquitin tags to protein of interest (POI) by molecular glue, heterobifunctional degrader, and 
selective estrogen receptor degrader (SERD). Each drug recruits an E3 ligase complex to the POI, thereby 
facilitating the transfer of ubiquitin from E2 ligase to exposed lysines on the POI. 
 
 
 
 

   
 
Supplementary Fig. 3 | Detailed mechanism of heterobifunctional degrader-triggered degradation. 
Schematic representation of how a heterobifunctional degrader results in the polyubiquitination of a protein 
of interest (POI). After polyubiquitination, the degrader dissociates and is free to bind more POIs, and the 
ubiquitinated POI is degraded by the proteasome.  
 



 
 
Supplementary Fig. 4 | Description of next-generation targeted protein degradation technologies. Brief 
description and visual representation of next-gen targeted protein degradation technologies, organized by 
type of innovation (ligand, pathway, delivery, and activation). 
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