Supplementary information

The AMR Accelerator: from individual organizations to efficient antibiotic development partnerships

In the format provided by the authors and unedited

Project	Duration	Partner	Budget	Торіс	Project	Project	Website
		organisations			coordinator	leader	
AB-Direct	51 months	7	€ 3 789 718	Antibiotic tissue distribution	Institut National	GSK	https://amr-
	Jul 2019-Sep 2023		EU funding: € 3 429 217		De La Sante Et De		accelerator.eu/project/
			EFPIA contribution: € 360 500		La Recherche		ab-direct
			Other:€1		Medicale		
COMBINE	72 months	11	€ 25 460 100	Coordination and support	Uppsala	GSK	https://amr-
	Nov 2019-Oct 2025		EU funding: € 8 000 000	across the AMR Accelerator,	University		accelerator.eu/project/
			EFPIA contribution: € 17 460 100	and research to strengthen the			combine
				scientific basis in the AMR field			
ERA4TB	72 months	32	€ 207 963 891	Development of anti-TB drug	Universidad	GSK	https://era4tb.org
	Jan 2020-Dec 2025		EU funding: € 89 815 600	combinations	Carlos III de		
			EFPIA contribution: € 55 837 633		Madrid		
			Associated Partners: € 62 310 658				
GNA NOW	78 months	12	€ 21 629 466	New antibiotics to treat Gram-	Lygature	GSK	https://amr-
	Jul 2019-Dec 2025		EU funding: € 12 299 995	negative infections		(2019-2023	accelerator.eu/project/
			EFPIA contribution: € 9 329 471			Evotec)	gna-now
PrIMAVeRa	60 months	18	€ 9 250 000	Predicting the impact of mAbs	European Vaccine	GSK	https://www.primavera
	Nov 2021-Oct 2026		EU funding: € 6 500 000	and vaccines on AMR	Initiative		-amr.eu
			EFPIA contribution: € 2 750 000				
RespiriTB	72 months	9	€ 9 962 900	New assets for multidrug	Leiden University	Janssen	https://respiritbntm.eu
	May 2019-Apr 2025		EU funding: € 6 840 000	resistant TB	Medical Center		
			EFPIA contribution: € 3 122 900				
RespiriNTM	72 months	9	€ 8 060 641	Novel assets for non-	Leiden University	Janssen	https://respiritbntm.eu
-	May 2019-Apr 2025		EU funding: € 5 687 984	tuberculous mycobacteria	Medical Center		
			EFPIA contribution: € 2 357 657				
			Other: € 15 000				
TRIC-TB	58 months	2	€ 8 373 250	Defining a new place for	BioVersys AG	BioVersys	https://amr-
	May 2019-Feb 2024		EU funding: € 6 926 375	ethionamide in 1 st line TB		AG	accelerator.eu/project/t
			EFPIA contribution: € 1 417 500	treatment			ric-tb
			Other: € 29 375				
UNITE4TB	84 months	29	€ 185 000 000	Accelerating the development	Stichting	GSK	https://www.unite4tb.o
	Jun 2021-May 2028		EU funding: € 92 500 000	of new treatment regimens for	Radboud		rg
			EFPIA contribution: € 62 364 744	ТВ	Universitair		-
			Associated Partners: € 30 135 256		Medisch Centrum		

Supplementary Table 1 | Overview of the AMR Accelerator projects

Supplementary Table 2 | AMR Accelerator research infrastructure and tools/resources for drug discovery and development

Project	Result type	Infrastructure and tools/resources	Delivery date
AB-Direct	PBPK models	Physiologically based pharmacokinetic (PBPK)	2023
		models allowing between-species extrapolations	
		to predict gepotidacin exposure in various tissues	
		of patients with various patho-physiological	
		characteristics and treated with various dosing	
		regimens.	
AB-Direct	PK/PD models	Pharmacokinetic/Pharmacodynamic (PK/PD)	2023
		models to relate gepotidacin tissue	
		concentrations versus time profiles to the	
		kinetics of effect and eventually select the best	
		dosing regimens to reach optimal antimicrobial	
		efficacy.	
COMBINE	Animal infection	Standardised <i>in vivo</i> pneumonia mouse model to	2025
	model	test small molecule antibiotics.	
COMBINE	Bacterial strain	Preclinical repository with bacterial strains found	2023
	repository	to be reproducibly virulent and fulfilling	
		performance criteria in the COMBINE	
		standardised pneumonia mouse model.	
COMBINE	Algorithm	Machine learning algorithm for predicting	2024
		whether a compound will be active against broad	
		spectrum (Gram-positive, Gram-negative, and	
		acid-fast) bacterial strains.	
COMBINE	Protocol	New bioassay protocol ontology enabling	2023
		conversion of unstructured bloassay protocol	
		data into structured machine-readable formats	
		that promote reusability, and allows accurate	
		description of <i>in vivo</i> efficacy study metadata for	
	D	antibiotic agents.	2024
COMBINE	Recommendations	Recurring issues and mitigation strategies for the	2024
		(clinical) development of vaccines and	
		infortions	
	Banasitany and	Drug Development Information Management	2022
ENA41D	Repusitory and	(DDIM) System with procedures for acquisition	2022
	Protocor	(DDIM) System with procedures for acquisition,	
		ovtornally generated tuberculosis (TP) specific	
		data sats	
FRAATR	Hollow fiber	Hollow fiber system for tuberculosis (TB): PK/PD	2023
LINATID	infection model	technology implemented to work with BSI 3	2025
	meetion model	nathogens. Deliverable and publication	
FRA4TB	Protocol	Implementation of enidemiological cut-off	2023
		(ECOEE) and clinical breaknoints (CBs) following	2025
		the FUCAST reference method for any newly	
		approved agents.	
ERA4TB	Animal infection	Mouse and non-human primate TB infection	2025
	models	models implemented, set of non-invasive	
		biomarkers (PET/CT imaging, cellular, cytokines	
		molecular biomarkers) and models to follow	

		disease evolution and response to treatment in	
		development.	
ERA4TB	Development	Preclinical and Phase I European Open Platform	2025
	Infrastructure	to accelerate the development of new regimens	
		for the treatment of TB.	
ERA4TB	Platform	C-Path Data Archive provides access to	2021
		databases/repositories containing multiple legacy	
		TB clinical trials and preclinical experiments for	
		ERA4TB partners, other TB consortia and qualified	
		researchers.	
ERA4TB	Repository	Platform for Aggregation of Clinical TB Studies	2021
		(TB-PACTS, part of the C-Path Data Archive)	
		contains data from TB clinical trials. Application	
		required to gain access.	
ERA4TB	Repository	TB-Platform for the Aggregation of Preclinical	2022
		Experiments Data (TB-APEX, part of the C-Path	
		Data Archive) catalogues preclinical trial data sets.	
		Application required to gain access.	
FRA4TB	Standardization	Standardized time-kill assays protocol with most	2023
		replicable and efficient plating methods.	2020
		increased throughput and structured data	
		reporting	
	Quality	Establishment of standards and consensus	2025
GINA NOW	management	protocols of <i>in vitro</i> PK/PD data determination to	2025
	system	allow inter-laboratory comparisons	
	Protocol	Development of biographytical methods to	2021
GINA NOW		quantify cationic pentides such as antihiotic	2021
		adilorbabdin derivatives, in various types of body	
		fluide	
	Protocol	Design and generation of biosynthetic gene	2022
GNA NOW	FIOLOCOI	cluster for beterologous production of	2025
		edilorbabding	
	A	Survive sulture of ret most calle to anticipate	2022
GNA NOW	Assay	EX VIVO culture of rat mast cells to anticipate	2022
		the risk of pseudo-allergic reaction for	
		cationic peptides.	2022
GNA NOW	Assay	UpMIC, a combined MIC and uptake	2023
		determination assay.	
GNA NOW	Target Product	Consensus target product profile (TPP) for	2024
	Profile	antibiotic treatment of severe (paediatric)	
		enteric bacterial infection in low- and middle-	
		income countries.	
GNA NOW	Bacterial strain	Collection of Gram-negative pathogens relevant	2025
	repository	to severe diarrhoea in low- and middle-income	
		countries.	
PrIMAVeRa	Repository	Epidemiological repository of patient-level data	2025
		on frequency measures, clinical outcomes,	
		mortality and economic impact associated with	
		the most common pathogens.	
PrIMAVeRa	Mathematical	Open access cost-effectiveness model that may	2025
	model	inform public health officials, policymakers and	
		the wider scientific community about the net	

		benefit for public health when applying vaccines against AMR.	
RespiriNTM	Bacterial strain repository	Collection of clinical isolates of <i>M. avium</i> and <i>M.abscessus</i> , including multi-drug and extensively drug resistant isolates.	2025
RespiriNTM	Animal infection model	Development of novel mouse model for <i>M.</i> <i>abscessus</i> infection.	2025
RespiriTB	Bacterial strain repository	Collection of clinical isolates of <i>M. tuberculosis,</i> including multi-drug and extensively drug resistant isolates.	2025
TRIC-TB	Protocol	Development of bioanalytical techniques to quantify alpibectir and ethionamide levels in cerebrospinal fluid (CSF). CSF concentrations can be used as a surrogate measure for assessment of central nervous system (CNS) drug delivery in early preclinical drug development.	2025
TRIC-TB	Protocol	Development of microbiological assay to assess the minimal inhibitory concentration of the alpibectir/ethionamide combination <i>in vitro</i> .	2025
UNITE4TB	Repository	Development and management of data, human sample and bacterial strain repositories. The data repository will contain de-identified patient-level data and access will be secured through a data collaboration platform. The human sample biobank will contain sputum, blood and urine samples will accompanying metadata for future research use. The bacterial strain biobank will incorporate strains isolated from participants within UNITE4TB trials.	2027-8
UNITE4TB	Biomarkers	Novel microbiological and immunological biomarkers evaluated for use as alternative clinical endpoints in mid-stage TB trials.	2027
UNITE4TB	Protocol	The development of a MAMS seamless trial design with EMA feedback that may be utilized beyond the PARADIGM4TB trial.	2024
UNITE4TB	Machine learning model	The development and assessment of a machine learning model to incorporate multiple data sets (clinical, biomarkers, PK) to predict relapse-free cure of TB.	2027
UNITE4TB	Clinical trial network	Establishment of new global clinical trial network, with sites across four continents for mid/late- stage evaluation of anti-TB regimens comprising new chemical entities. Selection of one or more regimen for subsequent Phase III evaluation.	2028

More information on AMR Accelerator tools and resources: https://amr-accelerator.eu/tools-and-resources

Supplementary Table 3 | COMBINE coordination and support

Coordination	Data Management Communication and	
		stakeholder engagement
 Coordination committee* 	Guidance on implementation	Communication Advisory
 Annual meetings 	of FAIR data standards	Board**
 Scientific interest groups 	 Guidance on data 	Communication materials
 Expert workshops and 	management planning	• Website
webinars	 Knowledge Graph 	 News updates and social
	Software tools	media support

* Cross-project collaborative platform with key representatives from the AMR Accelerator projects.

** External experts supporting the exchange of news and results between the AMR Accelerator and other stakeholders in the AMR field.