Supplementary information

First-in-class versus best-in-class: an update for new market dynamics

In the format provided by the authors

Dataset and analysis methods

Scope. For this analysis, we assessed 29 classes of drugs with novel mechanisms inaugurated after 2010, composed of 104 products in total. We started from a set of 499 FDA-approved products (as of October 1, 2022), filtering down subsequently as follows:

- Novel (276 products passed this filter): Classes had to be newly created, with no existing marketed products utilizing the same mechanism launched prior to 2011. This allowed us to focus on the commercial dynamics of the last decade and avoid any overlap with the previous analysis.
- Significantly sized (229 products passed this filter): Classes had to have at least one product with greater than \$300 million in confirmed or forecasted nominal sales from 2011–2028 that had launched in the United States.
- Competitive (136 products passed this filter): Classes had to have more than 1 product, all launched from 2011 to the time of this analysis.
- Market dynamics (104 products passed this filter): We excluded classes with unusual market dynamics, such as those covering conditions like HIV where the standard-of-care involves multiple combination therapies, classes where most of the products were launched by one company, and classes with other factors that confound competitive analysis.

Within the set of in-scope mechanistic classes, we also consolidated or split classes with the same mechanism of action but different modalities based on approval and/or development for overlapping indications. For example, we combined calcitonin gene-related peptide (CGRP) monoclonal antibodies and small-molecule antagonists into one class because of their similar mechanism in acting to block the binding of CGRP to its receptor and their usage to treat migraines. In contrast, we split Janus kinase (JAK) inhibitors into two separate classes based on their usage to treat myelofibrosis (a rare bone marrow cancer), separately from those used to treat inflammatory/auto-immune disorders like rheumatoid arthritis or atopic dermatitis. We also considered that many of the classes in-scope have highly active ongoing development, with multiple products in clinical trials and expected to launch in the future. We included products that have been filed for FDA approval or are expected to be shortly for which pivotal clinical trial data was available. This added 6 products, bringing the scope up to the final total of 104.

Methodology. We sought to replicate the approach used in the previous analysis (*Nat. Rev. Drug Discov.* **12**, 419–420; 2013). as much as possible in order to allow comparisons to be made. We assessed three variables for each product relative to other products within their class:

- Launch order: We used the rank-order of the date of each product's first approval by the US Food and Drug Administration (FDA) regardless of indication and approval in other geographies.
- Therapeutic advantage: We used a three-point scale from 1 (worst) to 3 (best), comparing efficacy, safety, and usage/administration profiles across common indications as well as coverage of distinct indications, with more weight given to indications with larger patient populations. Products that receive the highest score (3) on the scale are clearly superior to others in their class and are unlikely to be clearly surpassed in the near future by yet-to-be launched products, while products receiving the lowest score (1) have clear shortcomings in safety and/or efficacy that following products have addressed or could address.
- Commercial success: We calculated the present value of global sales for each product from 2011 to 2028 based on historical data and consensus forecasts, using 2021 as the present year and using a 10% discount rate for past and future sales. Each product's level of commercial success was based on the

share of present value of sales that they captured within their class. Sales data and forecasts were taken from EvaluatePharma as of July 2022.

In dividing classes by those used to treat multiple indications, we chose to use the relatively higherlevel indication definitions specified by EvaluatePharma.

Limitations. The analytical approach described above has some caveats that should be kept in mind when assessing the results. In terms of assessing therapeutic advantage, these products are often not directly compared in clinical trials, so comparisons were made based on data from separate trials, which may be confounded by differences in patient populations or clinical protocols. Furthermore, this analysis reflects the information available at time of writing – development timelines and product profiles may change over time, which could impact the accuracy of sales forecasts used as input to our quantification of commercial success. More broadly, our approach to quantifying commercial success gives an advantage to earlier launches based on the time-value of money (money in the present is more valuable than money of the same nominal value to be received later). We tested an approach using sales from a single year to quantify the level of commercial success – although the advantage of earlier launches was slightly diminished, the relative levels of success remained. In the capital-intensive biopharmaceutical industry where drug sales are used to fund development of future products, we believe that an approach that gives more value to revenue received earlier in time more accurately reflects economic reality.

There are also market factors, internal or external to the firms involved, that might affect these results. Commercial success is partially driven by the commercial capabilities of the companies distributing these products, which may result in differential sales independently of the therapeutic value of each drug. Events outside of the control of biopharmaceutical companies can also have a significant impact on the relative success or failure of particular products. For example, this analysis includes products that were launched immediately before or during the COVID-19 pandemic, which resulted in major disruptions to clinical and commercial operations across the industry and affected new diagnoses in a wide range of conditions, potentially affecting the normal commercial launch process and progression of sales.

Additional detail on overall results

Compared to third-to-launch and later products, the second-to-launch and best-in-class products are largely competing on the same ground as first-to-launch products, with all the disadvantages that a follower has. We also found that products launching fourth-or-later are on average capturing more commercial value than late products did in the 2013 analysis. This increased value for later entrants is driven by the overall increase in competition in mechanistic classes, leading to the development and launch of multiple "generations" of a class within a shorter timeframe, as well as biopharma companies pursuing alternative indications and innovative market access strategies in order to gain a foothold in the market.

Additional detail on market dynamics

Oncology favours first-to-launch products

- In many of these classes, the first product has benefitted from a long lead time over later entrants, such as the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib (Imbruvica; Johnson & Johnson/AbbVie), which launched almost four years before any other products in its class and captured 77% of the total class value.
- In other situations, the first product managed to fend off fast-followers by demonstrating superior therapeutic value and/or a broader overall label most famously, pembrolizumab, which has managed to outcompete nivolumab (Opdivo; Bristol Myers Squibb), approved just three months later, based on superior efficacy in most of the indications they share, particularly in first-line NSCLC where pembrolizumab showed efficacy as a monotherapy and nivolumab failed to do so.
- In a minority of cases, a superior follower is projected to outcompete the first entrant, such as ciltacabtagene autoleucel (Carvykti; Johnson & Johnson), a B-cell maturation antigen (BCMA)-targeting CAR-T cell therapy. Analysts predict that Carvykti's superior efficacy over the first entrant idecabtagene vicleucel (Abecma; Bristol Myers Squibb) will enable Carvykti to capture 55% of the value in the class, despite launching nearly a year later.

Outside of oncology, late entrants can capture more value

This is particularly well illustrated in the class of calcitonin gene-related peptide (CGRP) blockers (used as migraine treatments), in which eight products launched from 2018 to 2021, most of which have similar therapeutic value. Companies competing in this space have tried differentiating their assets by frequency of administration, route of administration and product pricing with varying levels of success. Companies playing in these types of classes need to think beyond therapeutic advantage and consider strong commercial differentiation as well.

Wide disease space gives an advantage to first entrants

First entrants without clear therapeutic superiority in classes with the potential for indication expansion have succeeded through:

- Getting a long head start over followers For example, the guanylate cyclase type-C receptor agonist linaclotide (Linzess; AbbVie/Ironwood), used to treat irritable bowel syndrome and constipation, launched over 4 years before plecanatide (Trulance; Bausch), so despite having a less favourable side effect profile and more difficult administration, it took 92% of the commercial value of the class.
- Getting to line extensions faster than followers For example, the anti-IL17 monoclonal antibody secukinumab (Cosentyx; Novartis), used to treat psoriasis, psoriatic arthritis and ankylosing spondylitis among other conditions, launched only about one year before a therapeutically superior product, ixekizumab (Taltz; Eli Lilly), but launched in all three of the above indications before ixekizumab had launched at all, compounded by ixekizumab's slow speed to matching those approvals. Thus, secukinumab is set to capture 63% of the commercial value of this class.

Highly competitive classes are claimed by first entrants or fast-followers

Fast-followers in classes with simultaneous development (where the first two entrants launch within two years of each other) can succeed with major efficacy improvements and/or addressing larger and more valuable patient populations. For example, tafamidis (Vyndaqel/Vyndamax; Pfizer), a small molecule transthyretin (TTR) stabilizer, failed to show enough benefit in treating polyneuropathy caused by TTR amyloidosis to gain FDA approval, but has shown significant benefit in treating

cardiomyopathy caused by that condition, which affects a substantially larger patient population. Thus, tafamidis is set to capture 65% of the commercial value of the class, compared to the 17% that the initial entrant, the RNA-interference-based patisiran (Onpattro; Alnylam), that launched nine months earlier. In some cases, alternative pricing schemes and more convenient or alternative dosing were successful – particularly in therapies for chronic conditions where access and ease of use can be key in differentiating between largely therapeutically undifferentiated treatments.

Future trends

Looking ahead, trends impacting R&D may continue to shift the balance of whether a first-in-class or best-in-class strategy should be pursued. For example, technological advancements such as AI-driven trials and *in silico* screening will likely accelerate development programs – companies that use these tools effectively can gain advantage in getting to market faster than their competitors. Novel modality development may open up new targets to treatments that were otherwise inaccessible and increase competition in those that are poorly addressed by existing therapies, and advances in personalized medicine may make late entry more feasible, with the ability to identify patients that are likely to respond to treatments. Finally, companies must consider the impact of policy reforms. Policies that seek to reduce the cost burden of the most expensive drugs, such as the provisions in the Inflation Reduction Act of 2022 that call for discounts based on time after approval, may raise the bar even further for followers to garner the same levels of pricing, thereby further advantaging first entrants. Companies also need to position themselves to take advantage of efforts by health authorities to promote the development of innovative new drugs, in the same way that accelerated approvals have made it possible to gain regulatory approval more quickly for products that are likely to be highly beneficial.

Supplementary Table 1 | Detailed listing of classes and products covered in this analysis

Therapeutic Area	MoA Class	Product	Generic name	Company	FDA approval year	Launch rank
On cology	PD-1/PD-L1 mAbs	Keytruda Opdivo Tecentriq Bavencio Imfinzi Libtayo Jemperli Tyvyt Tislelizumab	pembrolizumab nivolumab atezolizumab avelumab durvalumab cemiplimab dostarlimab sintilimab Tislelizumab	Merck & Co BMS Roche Merck KGaA AstraZeneca Sanofi GSK Eli Lilly BeiGene/Novartis	2014 2014 2016 2017 2017 2018 2021 TBD TBD	1 2 3 4 5 6 7 8 9
	BTK inhibitors	Imbruvica Calquence Brukinsa Velexbru	ibrutinib acalabrutinib zanubrutinib tirabrutinib	J&J AstraZeneca BeiGene Ono	2013 2017 2019 TBD	1 2 3 4
	CDK4 & CDK6 inhibitors	Ibrance Kisqali Verzenio Cosela	palbociclib ribociclib abemaciclib trilaciclib	Pfizer Novartis Eli Lilly G1 Therapeutics	2015 2017 2017 2021	1 2 3 4
	CD38 mABs	Darzalex Sarclisa	dara tumumab Isatu ximab	J&J Sanofi	2015 2020	1 2
	JAK inhibitors (oncology)	Jakafi Inrebic Vonjo	ruxolitinib fedratinib pacritinib	Incyte BMS CTI	2011 2019 2022	1 2 3
Oncology	PARP inhibitors	Lynparza Rubraca Zejula Talzenna Pamiparib	olaparib rucaparib niraparib talazoparib pamiparib	AstraZeneca Clovis Oncology Tesaro Pfizer BeiGene	2014 2016 2017 2018 TBD	1 2 3 4 5
	ALK inhibitors	Xalkori Zykadia Alecensa Alunbrig Lorbrena Rozlytrek	crizotinib ceritinib alectinib brigatinib lorlatinib entrectinib	Pfizer Novartis Roche Takeda Pfizer Roche	2011 2014 2015 2017 2018 2019	1 2 3 4 5 6
	CD19 bi-specific antibodies & CAR- T cell therapy	Blincyto Kymriah Yescarta/ Tecartus Breyanzi	blinatumomab tisagenlecleucel-T axicabtagene ciloleucel/ brexucabtagene autoleucel lisocabtagene maraleucel	Amgen Novartis Gilead BMS	2014 2017 2017/ 2020 2021	1 2 3 4
	B-Raf kinase inhibitors	Zelboraf Tafinlar Braftovi	vemurafenib dabrafenib encorafenib	Roche GSK Pfizer	2011 2013 2018	1 2 3
	BCMA CAR-T cell therapy	Abecma Carvykti	idecabtagene vicleucel ciltacabtagene autoleucel	BMS Johnson & Johnson	2021 2022	1 2
	c-Met kinase inhibitors	Tabrecta Tepmetko Orpathys	capmatinib tepotinib savolitinib	Novartis Merck KGaA AstraZeneca/HutchMed	2020 2021 TBD	1 2 3

Oncology	RET tyrosine kinase inhibitor	Retevmo Gavreto	selpercatinib pralsetinib	Eli Lilly Blueprint/Roche	2020 2020	1 2
	CD19 mAbs	Monjuvi Zynlonta	tafasitamab loncastuximab tesirine	Incyte ADC	2020 2021	1 2
	PDGFRa inhibitors	Ayvakit Qinlock	avapritinib ripretinib	Blueprint Deciphera	2020 2020	1 2
	FGFR inhibitors	Balversa Pemazyre Truseltiq Lytgobi	erdafitinib pemigatinib infigratinib futibatinib	J&J Incyte BridgeBio Taiho	2019 2020 2021 2022	1 2 3 4
Immunology	JAK inhibitors (oral)	Xeljanz Olumiant Rinvoq Opzelura Cibinqo Jyseleca	tofacitinib baracitinib upadacitinib ruxolitinib abrocitinib filgotinib	Pfizer Eli Lilly AbbVie Incyte Pfizer Galapagos/Gilead	2012 2018 2019 2021 2022 TBD	1 2 3 4 5 6
	IL-17 mAbs	Cosentyx Taltz Siliq Bimzelx	secukinumab ixekizumab brodalumab bimekizumab	Novartis Eli Lilly Bausch UCB	2015 2016 2017 TBD	1 2 3 4
	IL-23A mAbs	Tremfya Ilumya Skyrizi Mirikizumab	guselkumab tildrakizumab risankizumab mirikizumab	J&J Sun Pharma AbbVie Eli Lilly	2017 2018 2019 TBD	1 2 3 4
Immunology	IL-5 mAbs	Nucala Cinqair Fasenra	mepolizumab reslizumab benralizumab	GSK Teva AstraZeneca	2015 2016 2017	1 2 3
	Cortisol synthesis inhibitors	Isturisa Recorlev	osilodrostat levoketoconazole	Recordati Xeris	2020 2021	1 2
Cardiometabolic	SGLT2 inhibitors	Invokana Farxiga Jardiance Steglatro	canagliflozin dapagliflozin propanediol empagliflozin ertugliflozin	J&J BMS Boeringer Ingelheim Merck	2013 2014 2014 2014 2018	1 2 3 4
	PCSK9 inhibitors	Praluent Repatha Leqvio	alirocumab evolocumab inclisiran	Sanofi Amgen Novartis	2015 2015 2021	1 2 3
	Beta 3 adrenoceptor agonists	Myrbetriq Gemtesa	mirabegron vibegron	Astellas Urovant/Kissei	2012 2020	1 2
Central Nervous System	SMA treatments	Spinraza Evrysdi	nusinersen risdiplam	Biogen Roche	2016 2020	1 2
	TTR modulators	Onpattro Tegsedi Vyndaqel Amvuttra	patisiran inotersen sodium tafamidis meglumine vutrisiran	Alnylam Ionis Pfizer Alnylam	2018 2018 2019 2022	1 2 3
Central Nervous System	CGRP blockers	Aimovig Ajovy Emgality Ubrelvy Vyepti Nurtec Qulipta Zavegepant	erenumab fremanezumab galcanezumab ubrogepant eptinezumab rimegepant sulfate atogepant zavegepant	Amgen Teva Eli Lilly AbbVie Lundbeck Biohaven AbbVie Biohaven	2018 2018 2019 2020 2020 2020 2021 TBD	1 2 3 4 5 6 7 8
	Dual orexin receptor antagonists	Belsomra Dayvigo Quviviq	suvorexant lemborexant daridorexant	Merck Eisai Idorsia	2014 2019 2022	1 2 3
Gastro- Intestinal	GUCY type-C receptor agonists	Linzess Trulance	linaclotide plecanatide	Ironwood/AbbVie Bausch	2012 2017	1 2
Musculo- skeletal	Dystrophin exon- skipping antisense (exon 53)	Vyondys 53 Viltepso	golodirsen vitolarsen	Sarepta Nippon Shinyaku	2019 2020	1 2