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Gene knockout or replacement
The creation of gene knockouts is one of the first and 
most widely used applications of the CRISPR–Cas9 system. 
Nuclease-active Cas9 creates a double-strand break at the 
single guide RNA (sgRNA)-targeted locus1–6. These breaks 
can be repaired by homologous recombination (HR), which 
can be used to introduce new mutations7. When the 
double-strand break is repaired by the error-prone 
nonhomologous end joining (NHEJ) process, indels are 
introduced which can produce frame shifts and stop 
codons, leading to functional knockout of the gene.   

CRISPR imaging 
dCas9 fused to one or more 
fluorescent molecules can 
dynamically track specific DNA 
loci in living cells31–35.

Transcriptional regulation 
dCas9 can be fused to transcriptional 
activators (CRISPRa)8–13 or repressors 
(CRISPRi)14,15 to precisely and robustly 
modulate gene expression. As with nuclease-
active Cas9, these technologies can be used 
for pooled genetic screening to interrogate 
gene function at a genome-wide scale.

Epigenome editing
dCas9 can be fused to epigenetic effector domains to facilitate 
targeted epigenome editing. These effectors can write or erase 
histone modifications, or they can modulate DNA methylation. 
Epigenome editing can be used to transiently or stably activate or 
repress specific genes. Chromatin modifiers that have been used 
this way include p300 HAT (increases H3K27ac)16, SID4x 
(decreases H3K27ac)17, LSD1 (decreases H3K4me)18, KRAB 
(increases H3K9me3)15, PRDM9 (increases H3K4me3)19, and DOT1L 
(increases H3K79me3)20,21. DNA methylation enzymes include Tet1 
(decreases meCpG)22 and DNMT3a (increases meCpG)23,24. 

Base editing
dCas9 or Cas9 nickase (nCas9) can be fused to cytidine deaminases to induce substitutions or 
base edits without inducing double-strand breaks, and this approach thus minimizes indels. 
Deaminases combined with Cas9 nickase and uracil DNA glycosylase inhibitors can make 
precise edits, changing cytidine to thymidine with high efficiency25–28. Alternatively, larger 
windows can be semirandomly mutated by deaminase recruited to nCas9 (TAM)29 or to the 
sgRNA (CRISPR-X)30 to generate libraries of in-frame genetic variants. These diverse 
populations of point mutants can be subjected to selection to evolve new phenotypic variants.
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The expanding CRISPR toolbox
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The CRISPR–Cas9 genome-editing system has taken the world of 
biomedical science by storm. Initially, researchers used nuclease-active 
CRISPR–Cas9 to knock out or replace genes through either disruptive or 
precise genome edits. The CRISPR toolbox expanded with the development 
of nuclease-inactive dCas9, which recruits protein effectors that modulate 

gene expression, often by writing or removing epigenetic marks on DNA 
and histones. Most recently, base editors have increased the efficiency of 
CRISPR-targeted base substitutions for both precision editing and localized 
sequence diversification. This expanding toolbox has enabled site-specific 
genetic and epigenetic manipulation in a wide array of organisms.
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