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BUILDING BETTER
BENCHMARKS

There’s a problem with advancing Al for science: researchers
can’tagree on what constitutes progress. By Michael Brooks

nshul Kundaje sums up his frustration
with the use of artificial intelligence
insciencein three words: “bad bench-
marks propagate”.

Kundaje researches computational
genomics at Stanford University in California.
Heis keentoincorporate any form of artificial
intelligence (Al) that helps to accelerate pro-
gressin his field — and countless researchers
have stepped up to offer tools for this purpose.
But finding the ones that work best is becom-
ingever harder because someresearchers have
been making questionable claims about the Al
models they have developed. These claims can
take monthsto check. And they oftenturn out
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to be false — mainly because the benchmarks
used to demonstrate and compare perfor-
mance of these tools are not fit for purpose.

By then, it’s often too late: Kundaje and his
colleagues are left playing whack-a-mole after
the flawed benchmarks have been adopted and
‘improved’ by enthusiastic, but naive, users. “In
themeantime, everyone has been using these
[benchmarks] for all kinds of wrong stuff, and
then you have wrong information and wrong
predictions out there,” he says.

This is just one reason why a growing
number of scientists worry that, until bench-
marking is radically improved, Al systems
designed to accelerate progress in science

will have the opposite effect.

A benchmark is a test that can be used to
compare the performance of different meth-
ods, just asthe standard length of a metre pro-
vides a way to assess the accuracy of aruler.
“It’s the standardization and definition of
what we mean by progress,” says Max Welling,
amachine-learningresearcher and co-founder
of CuspAl, an Alcompany based in Cambridge,
UK. Good benchmarks allow a user to choose
the best method for a particular application,
or to determine whether more conventional
algorithms might give abetter result. “But the
first question,” says Welling, “is, what do we
mean by ‘better’?”
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It’s a surprisingly deep question. Does
‘better’ mean faster? Cheaper? More accurate?
If you're buying a car, you’ll need to consider
awiderange of factors, such as acceleration,
boot capacity and safety, each with its own
degree of importance to you. Al benchmark
tools areno different — for some applications,
speed might not matter as much as accuracy,
forinstance.

Butit’s even more complicated than that.
If your benchmark is badly designed, the
information it gives you could be mislead-
ing. If there’s ‘leakage’, in which the bench-
marking relies on data that were used to
trainthe algorithm, the benchmark becomes
more of a game of memory than a test of
problem-solving. Or the test might just be
irrelevant to your needs: it might be overly
specific, for instance, hiding a system’s ina-
bility to answer the broad swathe of ques-
tions you're interested in.

Thisis a problem that Kundaje and his col-
leagues have identified with DNA language
models (DNALMs), which Al developers think
could assist the discovery of interesting reg-
ulatory mechanisms in a genome. Around
1.5% of the human genome is made up of
protein-coding sequences that provide tem-
plates for creating RNA (transcription) and
proteins (translation). Between 5% and 20%
of the genome is made up of non-coding reg-
ulatory elements that coordinate gene tran-
scription and translation. Get the DNALMs
right, and they could help to interpret and
discover functional sequences, predict the
consequences of altering those sequences,
and redesign them to have specific, desired
properties.

So far, however, DNALMs have fallen short
of these goals. According to Kundaje and his
colleagues, thatis partly because they are not
being used for the right tasks. They are being
designed to compare favourably against
benchmark tests, many of which evaluate
usefulness not to key biological applications
but rather to surrogate objectives that the
models can meet’. The situation is not unlike
schools that ‘teach to the test’ — you end up
with students (or Al tools) that are qualified
to pass atest, but do little else.

Kundaje and his colleagues at Stanford
University have found these crucial shortcom-
ings in several popular DNALM benchmarks,
data sets and metrics. For example, one key
task is evaluating a model’s ability to rank
functional genetic variants: changes in DNA
sequences that can influence disease risk or
molecular function in cells. Although some
DNALMs are simply not evaluated on this task,
others use flawed benchmark data sets that
fail to account for ‘linkage disequilibrium’, the
non-random association of genetic variants.

That makes it harder toisolate the true func-
tional variants, a flaw that yields unrealistic
estimates of these models’ abilities to pinpoint

such variants. It’sarookie error, Kundaje says.
“This doesn’t require deep domain knowledge
—it’'sgenetics 101.”

Transparency and puffery

Inadequate benchmarks are creating a sim-
ilar teaching-to-the-test problemin a range
of scientific disciplines. But the failures don’t
happenonly becauseitis challengingto create
agood benchmark: it’s often because there’s
not enough pressure to do better, according
to Nick McGreivy, who completed his PhD in
the application of Al in physics last year at
Princeton University in New Jersey.

Most people who use Al for science seem
content to allow the developers of Al tools to
evaluate their usefulness using their own cri-
teria. That’s like letting pharmaceutical com-
panies decide whether their drug should go to
market, McGreivy says. “The same people who
evaluate the performance of Al models also
benefit from those evaluations,” he says. That
means that, evenifresearchisn’t deliberately
fraudulent, it can be biased.

Lorena Barba, amechanical and aerospace
engineer at the George Washington University
in Washington DC, has a similar perspective.
Science is suffering because of “poor trans-
parency, glossing over limitations, closet

“Thesame people who
evaluate the performance of
Almodels also benefit from
those evaluations.”

failures, overgeneralization, data negligence,
gatekeeping and puffery” in attempts to put
Al to work in real-world settings, as she put
itina2023 talk at the Platform for Advanced
Scientific Computing Conference in Davos,
Switzerland.

Barba’s own field is fluid dynamics — which
involves the study of problems such as
smoothing the flow of air over an aircraft’s
wings to improve fuel efficiency. Doing that
involves solving partial differential equa-
tions (PDEs), but that isn’t straightforward:
most PDEs can’t be solved through numeri-
cal analysis. Instead, the solutions must be
approximated through a process thatis similar
to (expertly guided) trial and error.

The mathematical tools that accomplish
this are known as standard solvers. Although
they arerelatively effective, they also require
significant computational resources. That’s
why many people in fluid dynamics hope
that Al — specifically machine-learning
approaches — can help them to do more with
fewer resources.

Machine learning is the form of Al that has
seen the most progress in the past five years
— mainly because of the availability of train-
ing data. Machine learning involves feeding

datainto analgorithmthatlooks for patterns
or makes predictions. The parameters of the
algorithm can be tweaked to optimize the
usefulness of the predictions.

In theory, machine learning could deliver
solutions to PDEs faster and using fewer com-
puting resources than conventional methods.
The trouble is, if you cannot trust that the
benchmarks used to evaluate performance
are useful or reliable, how can you trust the
output of the models they validate?

McGreivy and his colleague Ammar Hakim,
acomputational physicist at Princeton Univer-
sity, have conducted an analysis of published
‘improvements’ to standard solvers and found
that 79% of the papers they studied make prob-
lematic claims® Much of that is to do with
benchmarking against what they term weak
baselines. This can come from unfair com-
parisons: machine learning for PDE could be
seen as more efficient in terms of computing
resources — a shorter runtime, for example
— than a standard solver. But unless the solu-
tions have similar accuracy, the comparison
is meaningless. The researchers suggest that
comparisons must be made at either equal
accuracy or equal runtime.

Another source of weak benchmarking
is comparing an Al application with non-Al
numerical methods that are relatively
inefficient. In 2021, for instance, data scien-
tist Sifan Wang, who is now at Yale University
in New Haven, Connecticut, and computer
scientist Paris Perdikaris at the University of
Pennsylvania in Philadelphia claimed that
their machine-learning-based solver for
a different class of differential equations
yielded a10-to-50-fold speed-up compared
with a conventional numerical solver ®. But
as Chris Rackauckas, a computer scientist at
the Massachusetts Institute of Technology in
Cambridge, pointed out in a video, the pair
weren’t comparing it with state-of-the-art
numerical solvers, some of which could do
the job 7,000 times faster — just runningona
standard laptop — than Wang and Perdikaris’
approach.

“Tobe fair to [Perdikaris], after Ilhad pointed
this out, they did edit their paper,” Rackauckas
says. However, he adds, the original paper is
the only version that is accessible without a
paywall, and so stillengenders false hope con-
cerning Al's promise in this area.

There are many such misleading claims,
McGreivy warns. The scientific literature is
“not a reliable source for evaluating the suc-
cess of machine learning at solving PDEs”, he
says. In fact, he remains unconvinced that
machine learning has anything to offer in
this area. “In PDE research, machine learning
hasbeen and remains a solution looking for a
problem,” he says.

Johannes Brandstetter, a machine-learning
researcher atJohannesKepler UniversityinLinz,
Austria, and co-founder of an Al-driven physics
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Nick McGreivy found that some published improvements to Al models made misleading claims.

simulation start-up company called Emmi Al,
is more optimistic. He points to the Critical
Assessment of Structure Prediction (CASP)
competition that enabled machine learning to
assist with the prediction of 3D protein struc-
tures from their amino-acid sequences*.
CASP provides a widely accepted, inde-
pendent, double-blind, standardized test of
protein structure prediction. Its rigour led to
the successful protein-structure predictions
made by Google DeepMind'’s AlphaFold soft-
ware, and it led David Baker, a biochemist at
the University of Washingtonin Seattle, and his
team to use deep learning — a more complex
form of machine learning — to design proteins
for specific applications. Demis Hassabis and
JohnJumper at Google DeepMind in London
shared the 2024 Nobel Prize in Chemistry
with Baker for this work. It might be possible,
Brandstetter says, to solve the PDE bench-
marking issue through something similar.

‘Not completely incompetent’

Work in knot theory suggests that machine
learning could also be usefulin mathematics —
althoughthere are benchmark-based reasons
tobe cautious about Al's potential there, too,
says Mengdi Wang, a theoretical computer
scientist at Princeton University.

“All the benchmarks are very narrow,”
Mengdi Wang says. When it comes to math-
ematics, for example, the models memorize
problem-solving patterns and therefore can
look extremely competent when fed the right
questions — which are the ones presented in
publicdemonstrations of their performance.

Mengdi Wang was part of a team that
showed that this success is extremely brit-
tle’, even for advanced benchmarks, such as
the MATH Dataset, OlympiadBench and the
American Invitational Mathematics Examina-
tion. The team changed some numbersin the
maths problems so that they had to be solved
inentirely different ways. Failing to pickup on
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those tweaks, “all the models’ performance
dropped pretty significantly”, Mengdi Wang
says.

And thenthere’s the problem of benchmark-
ing an Al that can ‘do science’. In September
last year, ChatGPT developer OpenAllaunched
OpenAl ol, a model that the company says
“places among the top 500 students in the
USin a qualifier for the USA Math Olympiad”
and “exceeds human PhD-level accuracy on
abenchmark of physics, biology, and chem-
istry problems”. The benchmark in ques-
tion is GPQA (graduate-level Google-proof
Q&A benchmark), a “challenging dataset of
448 multiple-choice questions written by
domain expertsinbiology, physics,and chem-
istry”, asits creators putit.

Butarethose few hundred questionsenough
to create the broad knowledge and range
of capabilities one would expect of a good
graduate student? That certainly was not the
experience of Terence Tao, amathematician
at the University of California, Los Angeles.
Tao had the opportunity to experiment with
OpenAl ol last September, and commented
on social media that the experience “seemed
roughly on par with trying to advise a medio-
cre, but not completely incompetent, (static
simulation of a) graduate student.”

Tao was among the authors of a 2024
report®, commissioned by former US presi-
dent Joe Biden, on the prospects of using Al
to supercharge scientific research. One of
the report’s conclusions was that without
thoughtfully developed benchmark metrics
and validation procedures, “Al systems can
give unreliable outputs whose quality is diffi-
cult to evaluate, and which could be harmful
for ascientific field and its applications.”

Thereportrecommended that those bench-
marks should be developed and imposed by
governmentagencies, such as the US National
Science Foundation and the National Institute
of Standards and Technology. “I think using

the federal workforce to help regulate some of
these things would be very helpful,” says phys-
icist Laura Greene at Florida State University
inTallahassee, another of thereport’sauthors.

Researchers in China have made their own
suggestions for developing new benchmarks,
offering assessment tools, Al-ready data sets
and multidimensional assessments of model
attributes, such as knowledge, understand-
ing, reasoning and values’. The work currently
spans mathematics, physics, chemistry, life
sciences and Earth and space sciences.

Barba, too, has co-authored a study that
examined how to make scientific machine
learning more trustworthy — including the
development of reliable benchmarks®. She
and her co-authors say the first step is always
ensuring the problemin questionis extremely
well-defined, withaclear understanding of pre-
vious knowledge and the specific quantities of
interest. Withthatinplace, atightly constrained
process of verification, validation and credi-
bility building could lead to an Al tool that is
demonstrably useful to scientists. Inthe mean-
time, the authors ask that researchers “thor-
oughly document their choices and explain
thesignificance of the problemsthey address”.

Whether you think that will happen prob-
ably depends on whether you're an optimist
or a pessimist. Kundaje is the former: “There
needs to be a serious effort to create exem-
plarbenchmarks, but there’s definitely enough
motivation from all parties concerned, so it
will happen,” he says. His team, for instance,
hasintroduced asuite of benchmark tasks and
data sets (called DART-Eval) across varying
degrees of difficulty to calibrate the utility of
DNALMs more rigorously.

Until good benchmarks are in place across
theboard, however, Mengdi Wang encourages
pragmatism —and conversations with Al-savvy
colleagues —among any scientists looking to
use machine learning. “You need to go into
it with your eyes open,” she says. “You might
have adomain expertise, but you really need Al
expertise to understand what goes on behind
the curtain.”

Michael Brooks is a science writer in Lewes,
UK.
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