
Anshul Kundaje sums up his frustration 
with the use of artificial intelligence 
in science in three words: “bad bench-
marks propagate”.

Kundaje researches computational 
genomics at Stanford University in California. 
He is keen to incorporate any form of artificial 
intelligence (AI) that helps to accelerate pro-
gress in his field — and countless researchers 
have stepped up to offer tools for this purpose. 
But finding the ones that work best is becom-
ing ever harder because some researchers have 
been making questionable claims about the AI 
models they have developed. These claims can 
take months to check. And they often turn out 

to be false — mainly because the benchmarks 
used to demonstrate and compare perfor-
mance of these tools are not fit for purpose.

By then, it’s often too late: Kundaje and his 
colleagues are left playing whack-a-mole after 
the flawed benchmarks have been adopted and 
‘improved’ by enthusiastic, but naive, users. “In 
the meantime, everyone has been using these 
[benchmarks] for all kinds of wrong stuff, and 
then you have wrong information and wrong 
predictions out there,” he says.

This is just one reason why a growing 
number of scientists worry that, until bench-
marking is radically improved, AI systems 
designed to accelerate progress in science 

will have the opposite effect.
A benchmark is a test that can be used to 

compare the performance of different meth-
ods, just as the standard length of a metre pro-
vides a way to assess the accuracy of a ruler. 
“It’s the standardization and definition of 
what we mean by progress,” says Max Welling, 
a machine-learning researcher and co-founder 
of CuspAI, an AI company based in Cambridge, 
UK. Good benchmarks allow a user to choose 
the best method for a particular application, 
or to determine whether more conventional 
algorithms might give a better result. “But the 
first question,” says Welling, “is, what do we 
mean by ‘better’?”

BUILDING BETTER 
BENCHMARKS
There’s a problem with advancing AI for science: researchers 
can’t agree on what constitutes progress. By Michael Brooks
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It’s a surprisingly deep question. Does 
‘better’ mean faster? Cheaper? More accurate? 
If you’re buying a car, you’ll need to consider 
a wide range of factors, such as acceleration, 
boot capacity and safety, each with its own 
degree of importance to you. AI benchmark 
tools are no different — for some applications, 
speed might not matter as much as accuracy, 
for instance.

But it’s even more complicated than that. 
If your benchmark is badly designed, the 
information it gives you could be mislead-
ing. If there’s ‘leakage’, in which the bench-
marking relies on data that were used to 
train the algorithm, the benchmark becomes 
more of a game of memory than a test of 
problem-solving. Or the test might just be 
irrelevant to your needs: it might be overly 
specific, for instance, hiding a system’s ina-
bility to answer the broad swathe of ques-
tions you’re interested in.

This is a problem that Kundaje and his col-
leagues have identified with DNA language 
models (DNALMs), which AI developers think 
could assist the discovery of interesting reg-
ulatory mechanisms in a genome. Around 
1.5% of the human genome is made up of 
protein-coding sequences that provide tem-
plates for creating RNA (transcription) and 
proteins (translation). Between 5% and 20% 
of the genome is made up of non-coding reg-
ulatory elements that coordinate gene tran-
scription and translation. Get the DNALMs 
right, and they could help to interpret and 
discover functional sequences, predict the 
consequences of altering those sequences, 
and redesign them to have specific, desired 
properties.

So far, however, DNALMs have fallen short 
of these goals. According to Kundaje and his 
colleagues, that is partly because they are not 
being used for the right tasks. They are being 
designed to compare favourably against 
benchmark tests, many of which evaluate 
usefulness not to key biological applications 
but rather to surrogate objectives that the 
models can meet1. The situation is not unlike 
schools that ‘teach to the test’ — you end up 
with students (or AI tools) that are qualified 
to pass a test, but do little else.

Kundaje and his colleagues at Stanford 
University have found these crucial shortcom-
ings in several popular DNALM benchmarks, 
data sets and metrics. For example, one key 
task is evaluating a model’s ability to rank 
functional genetic variants: changes in DNA 
sequences that can influence disease risk or 
molecular function in cells. Although some 
DNALMs are simply not evaluated on this task, 
others use flawed benchmark data sets that 
fail to account for ‘linkage disequilibrium’, the 
non-random association of genetic variants.

That makes it harder to isolate the true func-
tional variants, a flaw that yields unrealistic 
estimates of these models’ abilities to pinpoint 

such variants. It’s a rookie error, Kundaje says. 
“This doesn’t require deep domain knowledge 
— it’s genetics 101.”

Transparency and puffery
Inadequate benchmarks are creating a sim-
ilar teaching-to-the-test problem in a range 
of scientific disciplines. But the failures don’t 
happen only because it is challenging to create 
a good benchmark: it’s often because there’s 
not enough pressure to do better, according 
to Nick McGreivy, who completed his PhD in 
the application of AI in physics last year at 
Princeton University in New Jersey.

Most people who use AI for science seem 
content to allow the developers of AI tools to 
evaluate their usefulness using their own cri-
teria. That’s like letting pharmaceutical com-
panies decide whether their drug should go to 
market, McGreivy says. “The same people who 
evaluate the performance of AI models also 
benefit from those evaluations,” he says. That 
means that, even if research isn’t deliberately 
fraudulent, it can be biased.

Lorena Barba, a mechanical and aerospace 
engineer at the George Washington University 
in Washington DC, has a similar perspective. 
Science is suffering because of “poor trans-
parency, glossing over limitations, closet 

failures, overgeneralization, data negligence, 
gatekeeping and puffery” in attempts to put 
AI to work in real-world settings, as she put 
it in a 2023 talk at the Platform for Advanced 
Scientific Computing Conference in Davos, 
Switzerland.

Barba’s own field is fluid dynamics — which 
involves the study of problems such as 
smoothing the flow of air over an aircraft’s 
wings to improve fuel efficiency. Doing that 
involves solving partial differential equa-
tions (PDEs), but that isn’t straightforward: 
most PDEs can’t be solved through numeri-
cal analysis. Instead, the solutions must be 
approximated through a process that is similar 
to (expertly guided) trial and error.

The mathematical tools that accomplish 
this are known as standard solvers. Although 
they are relatively effective, they also require 
significant computational resources. That’s 
why many people in fluid dynamics hope 
that AI — specifically machine-learning 
approaches — can help them to do more with 
fewer resources.

Machine learning is the form of AI that has 
seen the most progress in the past five years 
— mainly because of the availability of train-
ing data. Machine learning involves feeding 

data into an algorithm that looks for patterns 
or makes predictions. The parameters of the 
algorithm can be tweaked to optimize the 
usefulness of the predictions.

In theory, machine learning could deliver 
solutions to PDEs faster and using fewer com-
puting resources than conventional methods. 
The trouble is, if you cannot trust that the 
benchmarks used to evaluate performance 
are useful or reliable, how can you trust the 
output of the models they validate?

McGreivy and his colleague Ammar Hakim, 
a computational physicist at Princeton Univer-
sity, have conducted an analysis of published 
‘improvements’ to standard solvers and found 
that 79% of the papers they studied make prob-
lematic claims2. Much of that is to do with 
benchmarking against what they term weak 
baselines. This can come from unfair com-
parisons: machine learning for PDE could be 
seen as more efficient in terms of computing 
resources — a shorter runtime, for example 
— than a standard solver. But unless the solu-
tions have similar accuracy, the comparison 
is meaningless. The researchers suggest that 
comparisons must be made at either equal 
accuracy or equal runtime.

Another source of weak benchmarking 
is comparing an AI application with non-AI 
numerical methods that are relatively 
inefficient. In 2021, for instance, data scien-
tist Sifan Wang, who is now at Yale University 
in New Haven, Connecticut, and computer 
scientist Paris Perdikaris at the University of 
Pennsylvania in Philadelphia claimed that 
their machine-learning-based solver for 
a different class of differential equations 
yielded a 10-to-50-fold speed-up compared 
with a conventional numerical solver 3. But 
as Chris Rackauckas, a computer scientist at 
the Massachusetts Institute of Technology in 
Cambridge, pointed out in a video, the pair 
weren’t comparing it with state-of-the-art 
numerical solvers, some of which could do 
the job 7,000 times faster — just running on a 
standard laptop — than Wang and Perdikaris’ 
approach.

“To be fair to [Perdikaris], after I had pointed 
this out, they did edit their paper,” Rackauckas 
says. However, he adds, the original paper is 
the only version that is accessible without a 
paywall, and so still engenders false hope con-
cerning AI’s promise in this area.

There are many such misleading claims, 
McGreivy warns. The scientific literature is 
“not a reliable source for evaluating the suc-
cess of machine learning at solving PDEs”, he 
says. In fact, he remains unconvinced that 
machine learning has anything to offer in 
this area. “In PDE research, machine learning 
has been and remains a solution looking for a 
problem,” he says.

Johannes Brandstetter, a machine-learning 
researcher at Johannes Kepler University in Linz, 
Austria, and co-founder of an AI-driven physics 

“The same people who 
evaluate the performance of 
AI models also benefit from 
those evaluations.”

Nature  |  Vol 644  |  7 August 2025  |  295



simulation start-up company called Emmi AI, 
is more optimistic. He points to the Critical 
Assessment of Structure Prediction (CASP) 
competition that enabled machine learning to 
assist with the prediction of 3D protein struc-
tures from their amino-acid sequences4.

CASP provides a widely accepted, inde-
pendent, double-blind, standardized test of 
protein structure prediction. Its rigour led to 
the successful protein-structure predictions 
made by Google DeepMind’s AlphaFold soft-
ware, and it led David Baker, a biochemist at 
the University of Washington in Seattle, and his 
team to use deep learning — a more complex 
form of machine learning — to design proteins 
for specific applications. Demis Hassabis and 
John Jumper at Google DeepMind in London 
shared the 2024 Nobel Prize in Chemistry 
with Baker for this work. It might be possible, 
Brandstetter says, to solve the PDE bench-
marking issue through something similar.

‘Not completely incompetent’
Work in knot theory suggests that machine 
learning could also be useful in mathematics — 
although there are benchmark-based reasons 
to be cautious about AI’s potential there, too, 
says Mengdi Wang, a theoretical computer 
scientist at Princeton University.

“All the benchmarks are very narrow,” 
Mengdi Wang says. When it comes to math-
ematics, for example, the models memorize 
problem-solving patterns and therefore can 
look extremely competent when fed the right 
questions — which are the ones presented in 
public demonstrations of their performance.

Mengdi Wang was part of a team that 
showed that this success is extremely brit-
tle5, even for advanced benchmarks, such as 
the MATH Dataset, OlympiadBench and the 
American Invitational Mathematics Examina-
tion. The team changed some numbers in the 
maths problems so that they had to be solved 
in entirely different ways. Failing to pick up on 

those tweaks, “all the models’ performance 
dropped pretty significantly”, Mengdi Wang 
says.

And then there’s the problem of benchmark-
ing an AI that can ‘do science’. In September 
last year, ChatGPT developer OpenAI launched 
OpenAI o1, a model that the company says 
“places among the top 500 students in the 
US in a qualifier for the USA Math Olympiad” 
and “exceeds human PhD-level accuracy on 
a benchmark of physics, biology, and chem-
istry problems”. The benchmark in ques-
tion is GPQA (graduate-level Google-proof 
Q&A benchmark), a “challenging dataset of 
448 multiple-choice questions written by 
domain experts in biology, physics, and chem-
istry”, as its creators put it.

But are those few hundred questions enough 
to create the broad knowledge and range 
of capabilities one would expect of a good 
graduate student? That certainly was not the 
experience of Terence Tao, a mathematician 
at the University of California, Los Angeles. 
Tao had the opportunity to experiment with 
OpenAI o1 last September, and commented 
on social media that the experience “seemed 
roughly on par with trying to advise a medio-
cre, but not completely incompetent, (static 
simulation of a) graduate student.”

Tao was among the authors of a 2024 
report6, commissioned by former US presi-
dent Joe Biden, on the prospects of using AI 
to supercharge scientific research. One of 
the report’s conclusions was that without 
thoughtfully developed benchmark metrics 
and validation procedures, “AI systems can 
give unreliable outputs whose quality is diffi-
cult to evaluate, and which could be harmful 
for a scientific field and its applications.”

The report recommended that those bench-
marks should be developed and imposed by 
government agencies, such as the US National 
Science Foundation and the National Institute 
of Standards and Technology. “I think using 

the federal workforce to help regulate some of 
these things would be very helpful,” says phys-
icist Laura Greene at Florida State University 
in Tallahassee, another of the report’s authors.

Researchers in China have made their own 
suggestions for developing new benchmarks, 
offering assessment tools, AI-ready data sets 
and multidimensional assessments of model 
attributes, such as knowledge, understand-
ing, reasoning and values7. The work currently 
spans mathematics, physics, chemistry, life 
sciences and Earth and space sciences.

Barba, too, has co-authored a study that 
examined how to make scientific machine 
learning more trustworthy — including the 
development of reliable benchmarks8. She 
and her co-authors say the first step is always 
ensuring the problem in question is extremely 
well-defined, with a clear understanding of pre-
vious knowledge and the specific quantities of 
interest. With that in place, a tightly constrained 
process of verification, validation and credi-
bility building could lead to an AI tool that is 
demonstrably useful to scientists. In the mean-
time, the authors ask that researchers “thor-
oughly document their choices and explain 
the significance of the problems they address”.

Whether you think that will happen prob-
ably depends on whether you’re an optimist 
or a pessimist. Kundaje is the former: “There 
needs to be a serious effort to create exem-
plar benchmarks, but there’s definitely enough 
motivation from all parties concerned, so it 
will happen,” he says. His team, for instance, 
has introduced a suite of benchmark tasks and 
data sets (called DART-Eval) across varying 
degrees of difficulty to calibrate the utility of 
DNALMs more rigorously.

Until good benchmarks are in place across 
the board, however, Mengdi Wang encourages 
pragmatism — and conversations with AI-savvy 
colleagues — among any scientists looking to 
use machine learning. “You need to go into 
it with your eyes open,” she says. “You might 
have a domain expertise, but you really need AI 
expertise to understand what goes on behind 
the curtain.”

Michael Brooks is a science writer in Lewes, 
UK.
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Nick McGreivy found that some published improvements to AI models made misleading claims.
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