
The problem
Although the evolution of tumours often 
seems chaotic, it is commonly driven by 
‘hotspot’ mutations — those that occur 
more frequently in particular gene regions 
than would be expected by chance. These 
mutations tend to appear in a limited set of 
tumour-suppressor genes and oncogenes. 
A paradigmatic example is the tumour 
suppressor TP53, which is mutated in more 
than 50% of cancers, often in a narrow 
set of hotspot regions. There are many 
hypotheses for why hotspot mutations 
occur so consistently, including biased 
mutation rates, a greater ability to drive 
carcinogenesis and the possibility that the 
encoded mutant proteins (and thus mutant 
cells) can evade the immune system1–4.

However, these hypotheses have 
typically been tested individually, 
restricting their scope and potentially 
hindering prevention and treatment. 
If a hotspot’s preponderance is simply 
because it is not easily surveyed by the 
immune system, then the altered peptides 
it creates — known as neoantigens — might 
be poor targets for immune-based therapy. 
But if a hotspot’s prevalence has another 
cause (such as a tumour-promoting 
function) and it can be recognized by the 
immune system, it would be an attractive 
target for such therapies. That’s because 
many people’s cancers would need 
those mutations, and so would present 
the neoantigens to the immune system. 
Understanding hotspot-generating 
mechanisms is therefore important to the 
theoretical and practical understanding 
of cancer.

The solution
We sought to develop a mathematical 
model that could explain the mutational 
distributions of common cancer-driver 
genes, focusing on TP53. Drawing on 
concepts from statistical physics and 
machine learning, we developed a ‘free 
fitness’ function (analogous to one for free 
energy)5. This encapsulates background 
mutational processes, alterations in 
function of the mutant p53 protein and the 
degree to which p53 neoantigens avoid 
immune surveillance. Using our unified 
framework, we quantified fundamental 
constraints on functional alterations and 
immune surveillance. We found that hotspot 
mutations in driver genes that alter normal 
protein function might not be able to 
simultaneously avoid immune surveillance; 
and if mutations can tolerate surveillance, 
they might be less likely to alter protein 
function.

This predicted evolutionary trade-off 
suggested that some TP53 hotspots might 
make neoantigens that are more targetable 
than others — a theory that we tested. Our 
model predicted that some TP53 hotspots in 
ovarian and bladder cancers had differential 
susceptibility to immune targeting. 
A similar finding emerged from a large-scale 
screening of TP53 hotspot neoantigens in 
more than 100 healthy donors. Moreover, 
the model anticipated overall survival in 
multiple groups of patients (including 
individuals receiving immunotherapy), and 
helped to predict the age of cancer onset for 
people with Li–Fraumeni syndrome, who 
are predisposed to cancer owing to germline 
(inherited) TP53 mutations.

We next asked whether TP53 hotspots 
in cancers were already observed with the 
same high frequency in precancerous tissue. 
By analysing dozens of publications that 
identified mutations in lesions that were 
non-malignant — but possibly precancerous 
— we indeed found the same hotspots as in 
cancerous lesions. However, the ranking of 
their frequency was altered, implying that, 
at their first appearance, hotspot mutations 
might not yet avoid immune surveillance, 
and instead prioritize carcinogenic function. 
Surprisingly, our work suggests that 
immune surveillance is measurable during 
the transition to a cancerous state, rather 
than at the onset of hotspot formation.

The implications
Our work has several implications for 
understanding tumour evolution and 
designing interventions. We postulated that 
hotspot frequencies are due to deterministic 
features, which can be inferred to assess 
a hotspot’s contribution to the fitness 
of cancer cells. In so doing, we derived 
a trade-off between a hotspot’s cancer-
driving function and the immunogenicity 
of its neoantigens, which resides in what we 
called a ‘free fitness’ landscape (Fig. 1). The 
implication is that some hotspots might 
be more visible to the immune system than 
others, making them better targets for 
precision immunotherapy (especially before 
a tumour forms, when there is less immune-
driven selective pressure). 

Our method was built within the 
framework of statistical physics, integrating 
multimodal data in an interpretable, 
mechanistic model. This approach could 
enable the use of real-world machine 
learning to quantify cancer-cell fitness and 
apply findings therapeutically.
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Various theories have tried 
to explain the frequency 
and consistency of ‘hotspot’ 
mutations in many 
tumour-driving genes across 
different cancers. A model 
of the fitness benefit of 
these mutations shows that 
fundamental trade-offs 
occur between a tumour’s 
growth and its visibility to the 
immune system, with potential 
therapeutic implications.

Tumour driver 
mutations 
compromise 
between 
cancer growth 
and immune 
responses
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I was excited by this paper because, 
through a theoretical approach, it tackles 
broad and interesting questions in cancer: 
the complicated relationships between 
the oncogenicity and immunogenicity of 
mutations. The elegant dissection of fitness 
advantages and costs illuminates the trade-offs 
that are at play during cellular transformation 
by cancer drivers, and contextualizes tumour 
evolution at the basic genetic level.

Victoria Aranda, Senior Editor and Team 
Manager, Nature

Our work came from a desire to synthesize 
three major research threads in cancer 
evolution: how specific mutations drive 
oncogenesis; which cancer-cell mutations 
are due to intrinsic bias; and which features 
the immune system recognizes in a tumour. 
We sought a uniform mathematical approach, 
inspired by statistical physics and machine 
learning, to integrate these features into a 
model of the fitness benefit that cancer cells 
gain from mutations in TP53 — the most 
mutated gene in cancer. Our eureka moment 
was realizing that, in such a model, these 

features are inextricably bound together, 
inducing an evolutionary trade-off that has 
testable predictions. Our interdisciplinary 
Program in Computational Immuno-Oncology 
at the Memorial Sloan Kettering Cancer 
Center allowed us to test and confirm several 
predictions of our model. Many contributors 
were involved in this work, and our 
collaboration was initiated through Stand Up 
To Cancer’s Convergence programme.

B.D.G.

Figure 1 | Free-fitness landscape of TP53 mutations. The x axis plots the intrinsic fitness, which is the sum of 
the log-transformed background mutational frequency (log[pm]) and the positive functional fitness (f T

m) of 
individual mutations (black dots). The y axis plots the mutations’ negative immune fitness (f I

m) (or extrinsic 
fitness). The Pareto front (orange line) delineates the space beyond which a mutation cannot improve on one 
feature (intrinsic fitness) without a trade-off in another (extrinsic fitness), as exemplified by the R175H and 
R248Q/W mutations. The grey star indicates optimal free fitness constrained by the front, and the heat map 
represents the distance to the front. TP53 hotspot mutations are in red. Hoyos, D. et al./Nature (CC BY 4.0).

This an important effort to 
incorporate two elements of  
cancer development and 

therapeutic potential. It is one of the  
most ambitious attempts to date that  

I’ve seen to unify these two elements of 
tumorigenesis.”
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