
they require sophisticated methods capable 
of selectively probing only a few layers of 
water at the interface. Furthermore, the inter
pretation of vibrational spectra is complicated 
by coupling effects between vibrations in the 
water molecules themselves7.

Water molecules at electrolyte–electrode 
interfaces undergo a reorientation when 
the surface charge on the electrode changes 
from positive to negative, or vice versa8,9. 
This reorientation is due to the interaction 
of electric dipoles of the molecules with the 
interfacial electric field that arises from the 
electrode surface charge, which is controlled 
by the electrode potential. At high potentials, 
positive or negative ions (cations or anions, 
respectively) in the electrolyte, whose charge 
is opposite to that of the net surface charge on 
the electrode, concentrate in the vicinity of 
the electrode. This increased concentration of 
ions is expected to affect the interfacial water 
structure. However, under potentials at which 
the electrocatalytic conversion of water to 
hydrogen occurs, the formation of bubbles 
of hydrogen gas interferes with spectroscopic 
measurements, making spectroscopy under 
reaction conditions highly challenging.

Wang et al. have neatly circumvented 
these difficulties by devising an innovative 
experimental approach in conjunction with 
Raman spectroscopy. They used a metal elec-
trode comprising palladium atoms to act as a 
catalyst that dissociates water into molecular 
hydrogen (H2) and hydroxide (OH–; Fig. 1). As 
the electrode potential became more negative, 
they found that the water structure gradually 
shifted from a relatively disordered to a more 
ordered state. 

The spectroscopic evidence indicates that 
this transition could be due to weakening of 
the hydrogen-bonding network, with a loss 
of water molecules that originally had four 
hydrogen-bonding partners and a concur-
rent gain of water molecules associated with 
sodium cations (Na+) from the electrolyte; 
such water molecules form a ‘hydration shell’ 
around the ions. Hydrated sodium cations are 
electrostatically attracted to the negatively 
charged electrode surface and accumulate at 
the interface. Intriguingly, the authors found 
that the population of interfacial water mol-
ecules in the hydration shell of sodium ions 
tracks the rate of hydrogen formation across 
different single-crystal surfaces of palladium.

For a molecular picture of the more ordered 
state of interfacial water and its role in the rate 
of hydrogen formation, Wang et al. turned to 
ab initio molecular-dynamics modelling. They 
found that water in the hydration shell of the 
sodium ion can more closely approach the 
electrode surface than can other water mol-
ecules. This manifests in a more pronounced 
shift of the O–H stretching vibration of water 
associated with a sodium ion when the elec-
trode potential decreases. Their theoretical 

modelling indicates that narrowing the 
physical gap between the hydration shell and 
the palladium surface aids electron transfer 
from the electrode to the water, enhancing 
the rate of water dissociation into molecular 
hydrogen and hydroxide ions.

The insights derived from this work are 
relevant to other technologically useful 
electrocatalytic processes that involve 
water dissociation, such as the hydrogena-
tion of carbon dioxide to hydrocarbons or 

of nitrogen gas to ammonia. In those reac-
tions, the dissociation of water needs to be 
carefully controlled to achieve the desired 
product selectivity. Wang et al. have shown 
that the structure of interfacial water, and, 
consequently, the dissociation of water, can 
be systematically tuned by appropriate choice 
of the electrode’s crystal facet and the elec-
trolyte’s cation concentration and identity.

Inevitably, some questions remain. For 
example, how do the dynamics of interfacial 
water change with decreasing potential? These 

dynamics could be crucial in the formation of 
hydrogen and in electron transfer10,11. Investi-
gations are now required to study the extent 
to which the dynamics of interfacial water at 
electrocatalytic interfaces can be altered with 
decreasing electrode potential. 
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Mathematicians have been developing 
theories by studying examples throughout 
history. For instance, by looking at a cube and a 
pyramid, one might realize that the number of 
vertices, edges and faces are related. A math-
ematician recognizes such a pattern, extends 
it to more-general shapes, and then starts to 
think about why this relationship might hold. 
Parts of this process involve computations, for 
which mathematical software has been use-
ful since it first became available in the 1960s. 
However, human creativity enables mathema-
ticians to instinctively understand where to 
look for emerging patterns. On page 70, Davies 
et al. now describe a way of using artificial 

intelligence (AI) techniques to help with the 
creative core of the mathematical-research 
process1.

The relationship between the properties of 
convex polyhedra (3D shapes with flat faces, 
straight edges and vertices that all point out-
wards) was found centuries ago, and the for-
mula describing this relationship is named 
after the Swiss mathematician Leonhard Euler. 
Regardless of the shape, the number of verti-
ces (V) minus the number of edges (E) plus the 
number of faces (F) is equal to two: V − E + F = 2 
(Fig. 1). Can you arrive at this formula by stud-
ying a few examples of different shapes with a 
pen and paper? In this case, it’s possible, but 

Mathematics

AI aids intuition in 
mathematical discovery
Christian Stump

Machine-learning tools have been used to assist the part of 
mathematical research that usually relies on human intuition 
and creativity — leading to two fundamental results in 
different areas of mathematics. See p.70

“The authors have shown 
that the structure of 
interfacial water can be 
systematically tuned.”
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mathematical ideas that are more complicated 
require more-extensive computations — for 
which a computer can be extremely useful.

Mathematical research based on finding and 
studying examples typically follows a cycle 
(Fig. 1). First, the researcher identifies a few 
relevant examples (a cube, a pyramid and per-
haps a dodecahedron), then computes some 
of their properties and analyses the possible 
relationships between these properties. These 
relationships are then refined until a pattern 
emerges. The researcher continues by test-
ing these relationships on more complicated 
examples (from icosahedra to huge, randomly 
shaped polyhedra) and discards any proper-
ties that aren’t relevant. If the relationships 
do not hold, or the reasons why they hold 
remain unclear, the researcher redefines the 
criteria used to determine which examples are 
relevant. And the cycle continues.

All except one of the phases in this process 
require both human creativity and computa-
tion. For instance, analysing the properties 
of the examples chosen involves creativity in 
identifying which properties might be rele-
vant and then computation to calculate them. 
The only phase without computational tasks 
is the refinement step, which could be con-
sidered the core of the creative process. This 
phase requires the researcher to extract gen-
eral phenomena from concrete examples — 
based mainly on intuition. In the case of the 
polyhedra, this step might involve extending 
the pen-and-paper exercise above to different 
dimensions: does the pattern also hold for 2D 
shapes? And what about higher dimensions?

Although AI methods are not yet wide-
spread in mathematical research, in the past 
few years, several groups have shown that 
machine-learning tools can, in principle, be 
used to find relevant examples in large data 
sets2,3. Others have used such tools to estimate 
the properties of mathematical objects with 
high accuracy in efforts to better understand 
these data sets4. Davies and co-workers have 
now shown that machine learning can be used 
to assist researchers in the refinement step of 
the research cycle, previously regarded as a 
task mainly based on human intuition. Their 
approach could, in principle, be used in many 
different areas of mathematics.

The idea is to identify two structures — 
perhaps lists of numbers or networks — from 
the properties of mathematical objects of a 
certain type. It is then possible to hypothesize 
that these structures are related in the sense 
that one structure can give us information 
about the other. Machine learning is ideally 
suited to this task for large data sets, because 
it can use one structure to guess details of 
the other with greater accuracy than would 
be expected on the basis of chance.

Euler’s polyhedron formula offers a 
simple way of illustrating Davies and col-
leagues’ approach. The first structure in this 

case would be a list of four numbers represent-
ing the number of vertices of the polyhedron, 
the number of edges, its surface area and its 
volume. The second structure would be the 
number of faces. Euler’s formula can then be 
written as a simple linear relationship between 
these two structures. The process of arriving at 
the same formula also makes clear the fact that 
the volume and surface area are not relevant 

to this relationship. Applying this approach to 
Euler’s formula is straightforward, but things 
become more complicated when the relation-
ships aren’t as simple to identify. In such cases, 
machine-learning techniques can help.

The real advance was demonstrated 
when the authors successfully applied their 
approach to two separate areas of math
ematics. They used it to identify previously 
unknown relationships in knot theory and in 

combinatorial representation theory. Neither 
result is necessarily out of reach for research-
ers in these areas, but both provide genuine 
insights that had not previously been found 
by specialists. The advance is therefore 
more than the outline of an abstract frame-
work. Whether or not such an approach is 
widely applicable is yet to be determined, 
but Davies et al. provide a promising demon-
stration of how machine-learning tools can 
be used to support the creative process of 
mathematical research.
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Figure 1 | The cycle of developing mathematical theories by studying examples. After recognizing a 
possible pattern in the properties of mathematical objects, such as convex polyhedra (3D shapes with flat 
faces, straight edges and vertices that all point outwards), mathematicians typically go through a cycle 
to understand this pattern. They first compute the properties of some simple examples and analyse the 
possible relationships between these properties. The researchers then refine these relationships. For 
example, they might come up with Euler’s polyhedron formula, which posits that the number of vertices (V) 
minus the number of edges (E) plus the number of faces (F) of a convex polyhedron is always equal to two: 
V − E + F = 2. They then test this suggested relationship on more complicated examples, discard irrelevant 
properties and attempt to understand why the relationship holds. If it remains unclear, mathematicians then 
consider different examples and the cycle continues. Davies et al.1 show that machine-learning techniques 
can help researchers with the refinement step, which usually relies strongly on human intuition.

Number of vertices
Number of edges
Number of faces
Edge lengths
Surface area
Volume

Number of vertices
Number of edges
Number of faces
Edge lengths
Surface area
Volume

Refine possible 
relationships 
between properties

Test on more 
complicated examples

V – E + F = 2?Understand the 
formula or return to 
the start of cycle

Consider simple 
examples

Recognize a 
possible pattern

8 – 12 + 6 = 2 

5 – 8 + 5 = 2

8 vertices

5 vertices

12 edges

8 edges

6 faces

5 faces

Compute properties

Discard irrelevant 
properties

“The real advance was 
demonstrated when the 
authors successfully 
applied their approach 
to two separate areas of 
mathematics.”
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