
Rarely does scientific software spark 
such sensational headlines. “One of 
biology’s biggest mysteries ‘largely 
solved’ by AI”, declared the BBC. 
Forbes called it “the most important 

achievement in AI — ever”. The buzz over the 
November 2020 debut of AlphaFold2, Google 
DeepMind’s artificial-intelligence (AI) system 
for predicting the 3D structure of proteins, has 
only intensified since the tool was made freely 
available in July.

The excitement relates to the software’s 
potential to solve one of biology’s thorniest 
problems — predicting the functional, folded 
structure of a protein molecule from its linear 
amino-acid sequence, right down to the posi-
tion of each atom in 3D space. The underlying 
physicochemical rules for how proteins form 
their 3D structures remain too complicated 
for humans to parse, so this ‘protein-folding 
problem’ has remained unsolved for decades. 

Researchers have worked out the structures 
of around 160,000 proteins from all kingdoms 
of life. They have been using experimental 
techniques, such as X-ray crystallography 
and cryo-electron microscopy (cryo-EM), and 
then depositing their 3D information in the 
Protein Data Bank (www.rcsb.org). Compu-
tational biologists have made steady gains in 
developing software that complements these 
methods, and have correctly predicted the 3D 
shapes of some molecules from well-studied 
protein families. 

Despite these advances, researchers still 
lacked structural information for around 
4,800 human proteins. But AlphaFold2 has 
taken structure-prediction strategies to 
the next level. For instance, an independent 
analysis by researchers in Spain showed1 that 
the algorithm’s predictions had reduced 
the number of human proteins for which no 
structural data was available to just 29.

AlphaFold2 was revealed last November at 
CASP14, the 14th critical assessment of pro-
tein structure prediction (CASP), a biennial 
competition that challenges computational 
biologists to test their algorithms against pro-
teins for which structures have been exper-
imentally solved, but not publicly released. 
DeepMind’s software — which uses the sophis-
ticated machine-learning technique known 
as deep learning — blew the competition out 
of the water. 

“Based on CASP14 [results], they could get 
about two-thirds of the proteins with exper-
imental accuracy overall, and even for hard 
targets, they can fold about one-third of the 
proteins with experimental accuracy,” says 
Yang Zhang, a biological chemist at the Uni-
versity of Michigan in Ann Arbor, whose algo-
rithm was among CASP14’s runners-up. “That’s 
a very amazing result.” Two subsequent Nature 
papers2,3 and dozens of preprints have further 
demonstrated AlphaFold2’s predictive power. 

Zhang considers AlphaFold2 to be a striking 
demonstration of the power of deep learning, 
but only a partial solution to the protein-fold-
ing problem. The algorithm can deliver highly 
accurate results for many proteins — and 
some multi-protein complexes — even in the 
absence of structural information. This could 

drastically accelerate experimental structural 
biology and help to guide research in protein 
engineering and drug discovery.

But many essential details remain out of 
reach for some proteins. Chris Sander, a com-
putational biologist at the Dana-Farber Cancer 
Institute in Boston, Massachusetts, notes that 
algorithms still struggle with complicated 
protein targets that have multiple functional 
domains or highly dynamic structures. “It’s 
great what they’ve done,” says Sander. “But 
the flexibility of proteins and how they change 
is not touched by that, and just having a 
single snapshot doesn’t solve the problem of 
biological function.” 

Progress in deep learning — and a growing 
community of AlphaFold2 users — could 
bring some of these challenges to heel, 

ARTIFICIAL INTELLIGENCE PROVES 
ITS PROTEIN-FOLDING POWER
Deep-learning algorithms can now predict a protein’s 3D shape from its linear 
sequence — a huge boon to structural biologists. By Michael Eisenstein

A model of the human nuclear pore complex, built using AlphaFold2 and structural data.
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but a comprehensive understanding of 
protein biology will require a much broader 
computational and experimental toolbox.

Higher education
Deep learning incorporates machine-learning 
strategies in which computational neural net-
works are trained to recognize and interpret 
patterns in data. “These models don’t try to 
predict the structure all in one go,” says David 
Baker, a computational biologist at the Univer-
sity of Washington in Seattle. “They’re more 
like a physical simulation where the models are 
learning how to make good moves to improve 
the structure.” By training these algorithms 
with vast amounts of annotated experimen-
tal data, they can begin identifying links 
between sequence and structure that inform 
predictions for new proteins. 

Over the past five years, multiple teams have 
made headway in applying deep learning to 
structure prediction. The first iteration of 
AlphaFold won CASP13 in 2018, but its perfor-
mance was nowhere near the stand-out victory 
seen last year. Several academic laboratories 
subsequently developed deep-learning-based 
algorithms that outperformed the first gen-
eration of AlphaFold, including the Zhang 
lab’s D-I-TASSER4, the Baker lab’s trRosetta5 
and RaptorX6, developed by Jinbo Xu and his 
team at the Toyota Technological Institute in 
Chicago, Illinois.

But these algorithms were generally applied 
as parts of a larger software pipeline, creating 
the potential for error and inefficiency. “You 
often had different components miscommu-
nicating or not communicating optimally with 
one another because they were built piece-
meal,” says Mohammed AlQuraishi, a systems 
biologist at Columbia University in New York 
City. These limitations have fuelled interest in 
end-to-end algorithms that manage the entire 
process from sequence to structure. Deep-
Mind senior research scientist John Jumper, 
who is based in London, says that after CASP13, 
his team essentially discarded the first-gener-
ation AlphaFold and began to develop such a 
solution — AlphaFold2.

Several aspects of AlphaFold2 build on 
established techniques. For example, the algo-
rithm begins by generating multi-sequence 
alignments (MSAs), in which a new protein 
with unknown structure is compared against 
related sequences from other species. By iden-
tifying co-evolving amino acids that change in 
parallel, algorithms can home in on those that 
are most likely to associate with each other in 
the folded protein — places where one change 
in the sequence requires compensatory 
mutations to preserve the overall structure. 

Sander and his collaborator, computational 
biologist Debora Marks at Harvard University 
in Cambridge, Massachusetts, and their team 
developed this co-evolution-based technique 
in 2011 (ref. 7). “It was the first solution that 

worked across the board for many proteins, 
using evolution to get the correct fold and the 
basic shape,” says Sander. “And now machine 
learning makes it even better.” 

AlphaFold2’s developers drew on an unprec-
edented amount of information to build their 
MSAs, using billions of protein sequences from 
a data set compiled by computational biolo-
gist Martin Steinegger at Seoul National Uni-
versity in South Korea and Johannes Söding at 
the Max Planck Institute for Biophysical Chem-
istry in Göttingen, Germany. “They wanted 
me to turn that into a searchable database,” 
Steinegger says. 

The DeepMind team also devised innovative 
solutions to the protein-folding problem. One 
is the use of pattern-recognition tools known 
as transformers, which are commonly used in 
image analysis and natural-language process-
ing. Transformers are designed to recognize 
local patterns — strings of words or adjacent 
visual elements, for instance — that might guide 
interpretation of the data. DeepMind adapted 
them to work in the more challenging terrain 
of protein structure, building transformers 
that identify and focus on long-range protein 
interactions that are likely to be important in 
the final folded form. “In the final protein struc-
ture, you’ll make connections between quite 
distant things — like maybe residue 10 will talk 
to residue 350,” says Jumper. 

The AlphaFold2 process simultaneously 
tackles protein folding from multiple angles, 
and generates multiple representations of the 
predicted structure in parallel. These are then 
compared, and the resulting insights help to 
refine the modelling process in subsequent 
iterations. Jumper and his colleagues enabled 
this by designing a neural-network architec-
ture that allows fluid and efficient informa-
tion exchange between components of the 
software. “I think the biggest thing that made 
this what it is was that very well-engineered 
communication system,” says AlQuraishi.

Prediction for the people 
Because of the lag between AlphaFold2’s debut 
and the papers being published, and uncer-
tainty among academics over whether full 
details would be made available, Baker and his 
postdoc Minkyung Baek worked from sparse 
information on the software’s architecture 
to develop their own version, RoseTTAFold8. 
This uses many of the same strategies as Alpha-
Fold2, but with a few distinctive twists.

“At the time we made it available, it was far 
and away the best such structure-prediction 

method that you could use — but not as good 
as AlphaFold2,” says Baker. He points out that, 
by contrast with most academic labs, Deep-
Mind is a private entity with huge resources 
and a long-standing team of multidiscipli-
nary experts. The broadest explanation for 
AlphaFold2’s success “is just that this is Google 
money”, says Amelie Stein, a computational 
biologist at the University of Copenhagen. 
“But it’s also bringing together the expertise 
of software engineers and people who know 
proteins and understand protein structures.”

Since AlphaFold2’s July release2, labs have 
clamoured to work with the software and its 
structure predictions, which are available 
through a database hosted by the European 
Bioinformatics Institute (https://alphafold.
ebi.ac.uk). 

Users generally find the software straight-
forward to use, although they need several 
terabytes of disk space to download the data-
bases and multiple graphic processing units 
(GPUs) to handle the analysis. “Single-struc-
ture computations are not that bad — we run 
it for a couple of hours,” says bioinformati-
cian Arne Elofsson at Stockholm University. 
But because of their scale and the resources 
required, analyses of the full complement of 
an organism’s proteins, or proteome, are likely 
to be out of reach for most academic labs for 
the time being. 

For researchers who wish to test-drive 
the software, Steinegger and his colleagues 
developed ColabFold, a cloud-based system 
that runs both AlphaFold2 and RoseTTAFold 
using remote databases and computing power 
provided by Google9. The web-based inter-
face is relatively simple: “You can plug in your 
sequence and then just push a button and it 
predicts the structure for you,” says Steinegger. 
But it also allows users to tinker with settings 
and optimize their experiments — such as by 
changing the number of iterations of structure 
prediction. 

Finding the fold
Even the DeepMind team was taken aback by 
how well AlphaFold2 performed at CASP14. 
“We obviously had internal benchmarking that 
suggested that we were going to do very well,” 
says Jumper. “But at the end of the day, there 
was still a feeling in the back of my mind: is this 
really, really true?”

CASP14 assuaged those concerns, and 
the past few months have seen numerous 
demonstrations of the capabilities and limits 
of AlphaFold2. In a study3 published alongside 
the paper describing the algorithm, the Deep-
Mind team applied AlphaFold2 to a data set 
comprising 98.5% of the human proteome. The 
algorithm uses a metric called a predicted local 
distance difference test (pLDDT) to indicate 
its confidence that a particular amino acid’s 
position and orientation accurately reflects 
its real-world structure. In this way, 36% of all 

“You can plug in your 
sequence and then just push 
a button and it predicts the 
structure for you.”
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residues in the proteome could be resolved 
with very high confidence3. 

In August, researchers led by bioinformati-
cian Alfonso Valencia at the Barcelona Super-
computing Center in Spain independently 
concluded1 that AlphaFold2 boosted the pro-
portion of amino acids in human proteins that 
can be accurately mapped from 31% to 50%.

Zhang expects the software will make short 
work of the proteome’s low-hanging fruit. 
“They can probably fold all the single-domain 
proteins,” he says. But many proteins remain a 
challenge, such as those comprising multiple, 
independent, functional units joined by rela-
tively flexible linker elements. In these cases, 
individual domains might fall in line, but their 
orientation relative to one another might not. 

Even more challenging are protein segments 
that are intrinsically disordered in their nat-
ural state, which could represent more than 
one-third of all amino acids in the human 
proteome3. No algorithm can currently pre-
dict how these fold, but Jumper notes that 
extremely low pLDDT scores can at least 
demarcate these segments in a structure. “A 
totally unconfident prediction is quite a strong 
indicator of disorder,” he says.

One unexpected feature of both Alpha-
Fold2 and RoseTTAFold is their ability to 
predict accurate structures from pairs of 
protein chains that form complexes called 
homodimers (if formed of two identical pro-
teins) or heterodimers (formed of two dif-
ferent proteins) — something they were not 
initially trained to do. 

Elofsson and his team have reported that 
they successfully modelled up to 59% of the 
two-protein complexes10 that they analysed 
using AlphaFold2. This process becomes more 
computationally challenging when attempt-
ing to identify likely complexes from scratch 
than when modelling known interacting 
pairs. But Baker and his team showed11 that, 
by applying multiple deep-learning algorithms 
in tandem, they were able to both identify and 

model hundreds of multi-protein complexes 
from millions of possible interacting pairs 
in the proteome of the yeast Saccharomyces 
cerevisiae. “RoseTTAFold was about 100 times 
faster [than AlphaFold2], and so we could run 
it on all pairs and then use it to filter out the 
ones that were most likely interacting,” says 
Baker. “Then we ran AlphaFold2 on that much 
smaller subset.” 

Sensing the enthusiasm for this applica-
tion, in October, DeepMind released Alpha-
Fold-Multimer, which is specifically trained 
to tackle complexes of proteins that are 
formed by assemblies of multiple chains12. 
AlphaFold-Multimer generated high-accu-
racy predictions of interactions for 34% of 
the homodimeric complexes tested, and for 
23% of heterodimeric complexes. 

Functional frontiers
Still, many questions remain out of reach, 
notes Marks. “If your technology is bent on 
really learning to copy crystallography very 
well, then that’s great,” she says. But such static 
structural snapshots will not be suitable for 
exploring questions that relate to the manip-
ulation or inherent dynamic behaviour of a 
given protein, she points out.

For example, AlphaFold2 typically produces 
a single ‘correct’ answer for each sequence. But 
many proteins have multiple conformational 
states that are all relevant to function — deter-
mining, for example, whether an enzyme is 
active or inhibited. “You can try to tweak 
AlphaFold to get at one or the other, but often 
you just generate one [conformation] no mat-
ter what you do,” says Elofsson. The algorithm 
is simply not designed to simulate complex 
molecular physics, even if it captures the influ-
ence of these forces while generating predic-
tions. Getting at such problems will probably 
require experimental techniques that show 
the structure of the actual protein in multiple 
states, such as cryo-EM. 

AlphaFold2 is also generally not suitable for 

predicting how individual amino acid changes 
alter protein structure — a crucial factor in 
understanding how mutations contribute to 
disease. This is in part because the algorithm 
uses evolutionary perspectives to converge 
on a correct solution from many slightly 
different sequences, says Stein, whose work 
focuses on characterizing such variants. “If 
you flip a single residue somewhere, you can’t 
expect it to suddenly say, ‘this is a disaster’,” 
she says. However, she and her team have 
found that they can couple wild-type protein 
structures generated by deep learning with 
other mutation-analysis algorithms to achieve 
more-accurate predictions13.

The good news is that structural biologists 
won’t be out of a job any time soon. In fact, 
they might now be able to devote more time 
to other pressing questions in the field. Struc-
tural biologist Randy Read at the University 
of Cambridge, UK, notes, for example, that 
structure predictions from AlphaFold2 are 
already helping crystallographers to drasti-
cally accelerate their data interpretation by 
overcoming the tedious ‘phase problem’ — a 
challenge associated with the interpretation 
of incomplete data generated in an X-ray 
diffraction experiment.

Protein designers could also see benefits. 
Starting from scratch — called de novo protein 
design — involves models that are generated 
computationally but tested in the lab. “Now you 
can just immediately use AlphaFold2 to fold 
it,” says Zhang. These results can even be used 
to retrain the design algorithms to produce 
more-accurate results in future experiments.

For AlQuraishi, these possibilities suggest 
a new era in structural biology, emphasizing 
protein function over form. “For the longest 
time, structural biology was so focused on the 
individual pieces that it elevated these beauti-
ful ribbon diagrams to being almost like an end 
to themselves,” he says. “Now I think structural 
biology is going to earn the ‘biology’ compo-
nent of its name.”

Michael Eisenstein is a freelance writer in 
Philadelphia, Pennsylvania.
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These predictions generated by AlphaFold2 highlight the structural variety of proteins.
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