
It takes about 20 days for a mouse to grow 
from fertilized egg to newborn pup. Ricard 
Argelaguet and his colleagues were inter-
ested in what exactly happens inside the 
cells of a mouse embryo between days 4.5 

and 7.5, when the stem cells shift into three 
layers: the ectoderm, which develops into the 
nervous system; the mesoderm, which devel-
ops into muscle and bone; and the endoderm, 
which develops into the gut and internal organs. 

Researchers can easily distinguish between 
these three layers by looking at which genes 
are expressed in individual cells. But the team 
wanted a more nuanced picture. So, in 2019, 
the researchers combined the gene-expression 
data with two other sources of information1. The 
first was methylation, a chemical modification 

that alters how genes are expressed. The second 
was chromatin accessibility: how modifications 
to chromatin, the knotty complex of proteins 
and DNA in eukaryotic nuclei, affect which 
parts of the DNA are accessible for transcrip-
tion into RNA. Both are factors in epigenetics, 
the non-genetic elements that influence how 
genes are expressed. 

Combining the three data sources revealed 
something unexpected: in the absence of 
external stimuli, embryonic stem cells will 
become ectoderm. “This was the most essen-
tial contribution of the paper,” Argelaguet 
says. It showed “that there is kind of a hierar-
chy of cell fate specification at the epigenetic 
level”. Argelaguet, a computational biologist at 
the Babraham Institute in Cambridge, UK, was 

one of four first authors on the study, which 
was supervised by Babraham investigator Wolf 
Reik, as well as John Marioni at the EMBL-Euro-
pean Bioinformatics Institute in nearby Hinx-
ton, and Oliver Stegle at the German Cancer 
Research Center in Heidelberg.

Their result explains the decades-old obser-
vation that embryonic stem cells in culture will 
preferentially  differentiate into neurons. And 
it’s a finding, says Argelaguet, that would have 
been impossible to make using just a single 
type of data. 

Genomics explosion
The past decade has witnessed an explo-
sion in single-cell genomics. Single-cell RNA 
sequencing (RNA-seq), which profiles gene 

SINGLE-CELL ANALYSIS 
ENTERS THE MULTIOMICS AGE
A rapidly growing collection of software tools is helping researchers 
to analyse multiple huge ‘-omics’ data sets. By Jeffrey M. Perkel

Multiomics data are increasingly being combined with spatial information.
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expression, is the most common technique. 
Other methods detail processes such as meth-
ylation, genetic variation, protein abundance 
and chromatin accessibility. 

Now, researchers are increasingly com-
bining these methods — and the resulting 
layers of data — in ‘multiomics’ experiments. 
Argelaguet, for instance, combined gene-ex-
pression profiling, methylation and chromatin 
accessibility in a technique called scNMT-seq. 
Another technique, CITE-seq, profiles both 
transcription and protein abundance. And 
G&T-seq captures both genomic DNA and RNA.

Whatever the acronym, all these techniques 
aim to glean complex biological insights 
that might be undetectable using any single 
method. But the task is computationally chal-
lenging, and making sense of the resulting data 
even more so. A fast-growing suite of software 
tools can help. 

Almost all single-cell studies contain visu-
alizations — sometimes called t-SNE or UMAP 
plots — which represent single cells as points 
on a 2D plane. Studying how those points 
aggregate, or cluster, can help researchers to 
discern biological structures. But the visuali-
zations aren’t easy to create. 

For one thing, single-cell data sets have 
quickly become enormous. Back in 2019, 
Argelaguet captured individual cells in micro-
titre plates using a fluorescence-activated cell 
sorter, which limited him to analysing 200–
300 cells per week1. Now, he can process thou-
sands of cells, thanks in part to a microfluidics 
platform developed by the biotechnology 
company 10x Genomics in Pleasanton, Cali-
fornia. And a 2020 atlas of human fetal gene 
expression supervised by genome scientists 
Cole Trapnell and Jay Shendure at the Uni-
versity of Washington, Seattle, included four 
million cells2. The result is basically a table with 
80 billion entries — 4 million rows of cells by 
20,000 genes. 

And yet, “the overwhelming majority of the 
entries in that matrix are zero”, Trapnell says. 
This represents a key statistical and computa-
tional challenge, as scientists work to distin-
guish true zeroes — for instance, genes that 
are actually not expressed — from dropouts 
that result from sample handling or sensitivity 
issues. One option is to use imputation meth-
ods, which ‘borrow’ data from similar cells in 
the data set to fill in the gaps. As Stegle puts 
it: “Your neighbours tell you something about 
the unknown.”

Difficulty squared 
Combining modalities only multiplies the dif-
ficulty, says Argelaguet. “All the weaknesses, 
all the noise, all the challenges from each tech-
nology, it just gets exacerbated by combining 
them into a multimodal assay.” 

Argelaguet and his colleagues spent three 
months collecting their data set, and two years 
analysing it. Jason Buenrostro, an epigeneticist 

at Harvard University in Cambridge, Massa-
chusetts, says that some of his team’s compu-
tations for a study describing a method called 
SHARE-seq took weeks to complete3. 

The pay-off of the added detail, says Bernd 
Bodenmiller, who studies single-cell tumour 
biology at the University of Zurich, Switzer-
land, is that it helps researchers to “understand 
the biology”. And they can do so using existing 
data sets, such as the Human Cell Atlas and its 
13.5 million cell profiles. In a preprint4 pub-
lished in June, Chengxiang Qiu, a graduate 
student in Shendure’s lab, and his colleagues 
combined 1.4 million cells from 4 published 
atlases to tease apart how one cell type arises 
from another across 10 days of mouse devel-
opment. The resulting “trajectories of mam-
malian embryogenesis” revealed more than 
500 transcription factors that could have a role 
in cell-type specification. 

Software tools
The information can be integrated in three 
main ways, depending on what features (or 
‘anchors’) the data sets have in common, 
says Marioni, who has published a review5 
on the topic. ‘Horizontal integration’ is used 
for data sets of the same type — two RNA-seq 

data sets, for instance. In that case, genes act 
as the anchors, “because you’re measuring the 
same set of genes in every population of cells”, 
Marioni says. 

‘Vertical integration’ involves data sets col-
lected from the same cells, such as for RNA-
seq and chromatin accessibility. And ‘diagonal 
integration’ involves molecular measurements 
made across unrelated populations of cells. 
“The question is, what’s the common feature 
that you’re going to use?” Marioni says. One 
approach to vertical integration is to associate 
sites of chromatin accessibility with  the genes 
they regulate, and then compute a probable 
gene-expression profile from the data.

“So, basically, you’re making it into a hori-
zontal-integration problem, where genes 
become the anchors again,” Marioni says. 

Integrating data sets, Trapnell says, is like 
aligning DNA sequences. “You’re assuming 
that a population of cells that you can see 
with one modality is visible with the other, and 
that for most cells or cell populations, there’s 
going to be a one-to-one mapping.” The trick, 
he says, is to align the sets so that you can be 
confident that any differences you see “are not 
due to your inability to find the similarities. 
And that’s the same spirit that motivates most 
sequence-alignment algorithms.”

Dozens of tools have been developed to 
achieve this, and many are indexed on the 
community-driven ‘awesome-multi-omics’ 
and ‘awesome-single-cell’ lists on GitHub.

Seurat, for instance, developed by  Rahul 
Satija’s team at the New York Genome Center, 
effectively aligns UMAP visualizations of two 
data sets to create a “shared, low-dimensional” 
space, says Tim Stuart, a computational biol-
ogist in Satija’s group. “That enables you to 
find neighbours of one data set in the other 
data set, and vice versa.” Other popular 
options include: Argelaguet’s MOFA, which 
he describes as a “kind of a multiomics gen-
eralization” of principal-component analysis; 
Harmony, from Soumya Raychaudhuri’s team 
at Harvard Medical School in Boston, Massa-
chusetts; and LIGER, developed by Joshua 
Welch’s team at the University of Michigan in 
Ann Arbor. According to Welch, just as online 
retailers can mine their customers’ purchase 
histories to identify products that a user is 
likely to want, LIGER uses ‘integrative non-neg-
ative matrix factorization’ to identify related 
cells and cell clusters.

Spatial hackathon
With such a fast-growing tool set, researchers 
can struggle to know what they should use for 
which questions, and how to go about it. To 
help close those gaps, Elana Fertig at Johns 
Hopkins University in Baltimore, Maryland; 
Aedin Culhane at Harvard T. H. Chan  School of 
Public Health in Boston; and Kim-Anh Lê Cao at 
the University of Melbourne, Australia, organ-
ized a virtual conference on single-cell omics 
data integration. As part of that event, held 
in June 2020, the organizers provided three 
curated data sets and challenged attendees 
to apply whichever algorithms and workflows 
they liked to integrate and interpret the data, 
in a series of ‘hackathons’. Unlike in-person 
hackathons, in which researchers intensively 
collaborate on software projects in shorts 
bursts over a few hours or days, these were 
virtual events held over a month, with collab-
orators dispersed around the globe. One event 
focused on Argelaguet’s mouse-embryo data 
set; the others concentrated on spatial-da-
ta-integration problems. 

“We were interested to see what would be 
the challenges we should anticipate in multi-
omics,” Lê Cao says. “We thought that it would 
be good to gather the different experts in the 
field and see how they would approach the 
analysis of multiomic studies in single cells.” 

Conventional single-cell experiments detail 
thousands of molecules at the expense of posi-
tional information. Spatial methods capture 
molecular identity without that dissociation 
step. By layering the two data types, research-
ers can compute the probable physical loca-
tions of dissociated cells, or flesh out spatial 
data sets with extra  molecular detail. 

“How a cell determines its fate, how it’s 

“We are piling up our 
knowledge and methods and 
tweaking them, so we don’t 
reinvent the wheel.”
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going to function, is a combination of many 
things,” says Marioni. “But something that’s 
very important is the physical location of the 
cell within the embryo: the mechanical pres-
sures upon it, the local signalling environment, 
the shape of the embryo, how it’s changing 
through development. So, if we want to have 
a better understanding of cell-fate decisions, 
it’s really helpful to have these measurements 
in space.”

In one challenge, researchers were given 
both spatial and non-spatial RNA-expression 
data sets from a mouse visual cortex. They 
were then asked to use cell-type assignments 
computed in the non-spatial data to identify 
cell types in the spatial data, in which fewer 
genes are identified per cell. A second chal-
lenge asked whether it is possible to iden-
tify gene-expression signatures of cellular 
location in non-spatial transcriptional data. 
According to Fertig, the answer to that was 
mixed. “It depends on the data set and cell 
type,” she says. 

Pratheepa Jeganathan, a statistician at 
McMaster University in Hamilton, Canada, 
tackled a third challenge, which involved pro-
tein-abundance data from different cohorts of 
people with breast cancer. Hackathon partic-
ipants were tasked with integrating partially 
overlapping proteomics data sets; inferring 
the locations of cells for which no spatial data 
exist; and using non-spatial data to predict the 
expression levels of proteins that were not 
measured in the spatial data. 

Attendees approached these hackathons 
mostly by repurposing existing algorithms, 
says Lê Cao. Members of her group used a 
statistical approach based on partial least 
squares, which they originally developed for 
bulk genomics data. “We are piling up our 
knowledge and methods and tweaking them, 
so we don’t reinvent the wheel,” she says. 

Jeganathan used topic analysis, a nat-
ural-language processing technique that 
she adapted during her postdoc, to infer 
how microbial communities differ across 
environments. In the hackathon, she adapted 
the method again, to characterize the spatial 
distribution and composition of cells across 
data sets. According to Culhane, that kind of 
information can be clinically useful, because 
the distribution of immune cells around 
a tumour can influence how well a person 
responds to therapy. “The spatial orientation 
of the cells was actually informative for patient 
survival,” she says.

Gene regulatory networks
Two omics data types are particularly useful 
for determining the molecular mechanisms 
underlying cellular development. 

Single-cell RNA-seq data identify which 
genes are expressed in a given cell, whereas 
chromatin accessibility assays highlight 
regulatory regions. By integrating those, 

researchers can identify the regulatory 
elements that act on a gene, the transcrip-
tion factors that probably control those ele-
ments and when and where those factors are 
expressed. The result is a gene-regulatory 
network that researchers can probe to tease 
apart how cells’ fates are determined. 

Buenrostro and his team applied this 
strategy to show how chromatin opens up, 
or becomes primed, in advance of cellular dif-
ferentiation in mouse skin. They were then 
able to use the cell’s ‘chromatin potential’ to 
predict how  individual cells were likely to dif-
ferentiate. Chromatin, Buenrostro explains, 
“should always point in the direction of differ-
entiation”. His team has released a software 
package called FigR to help define these net-
works. 

CellOracle, from Samantha Morris’s team at 
Washington University in St. Louis, Missouri, 
allows researchers to simulate the effect of 
impeding or boosting impact of transcription 
factors on cell identity. Morris worked with 
researchers in Milan, Italy, to see how specific 
transcription factors affect the development 
of brain cells called medium spiny neurons in 
human embryos, which would be impossible 
to do using genetic manipulation6. Separately, 
her team has computationally modified some 
200 transcription factors to identify those that 
are involved in formation of the axial meso-
derm in embryonic zebrafish (Danio rerio). The 
axial mesoderm develops into the notochord, 
a skeletal rod that supports the embryo’s body. 
The software predicted that the deletion of 
one of those transcription factors, noto, would 

not only prevent notochord development, 
which was already known, but also promote 
the growth of another developmental struc-
ture, which was not. When they knocked out 
noto in the lab, that is precisely what they saw. 
“We were able to predict a new phenotype in 
this knockout,” Morris says, “and then we val-
idated that experimentally using single-cell 
RNA-seq.” 

The kitchen sink
As the single-cell multiomics field accelerates, 
new tools are appearing at a dizzying pace. 
If cellular information can be captured by 
sequencing, single-cell biologists are folding 
it into their experiments.

In June, researchers in the United States and 
Japan described a method7 of simultaneously 
capturing three pieces of information: chro-
matin accessibility, cell-surface protein abun-
dance and cellular lineage, the last of which is 
measured using mitochondrial DNA. 

The team initially called its method ASAP-
seq. But during the revision of the paper, 10x 
Genomics released a new microfluidics kit to 
simplify the collection of gene-expression and 
chromatin-accessibility data from the same 
cells, and the researchers decided to blend that 
kit with ASAP-seq to fold in yet another layer of 
information: transcription. 

The team dubbed its method DOGMA-seq — a 
nod to the ‘central dogma of molecular biology’, 
which states that DNA is transcribed into RNA, 
and RNA is translated into proteins. Among 
other things, the technique revealed lineage 
biases during bone-marrow differentiation7. 

“The fact that a new assay was introduced as 
a revision experiment above all speaks to the 
breakneck speed at which the single-cell field 
is moving,” says Caleb Lareau, a computational 
biologist at Stanford University, California, 
and a member of the team. 

Researchers can only try to keep up. Such is 
the pace of development that Buenrostro jokes 
that his students’ minds “implode” with each 
new publication as they scramble to work out 
how it affects their research. 

And Lareau says that he and his colleagues 
have pre-emptively named their successor to 
DOGMA-seq. Their working title? ‘Kitchen-seq’, 
as in: “How can you sequence everything but 
the kitchen sink?”

Jeffrey M. Perkel is technology editor at 
Nature.
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UMAP-MAKING
Dimensionality-reduction visualizations allow 
researchers to discern biological structures hidden 
in cell populations. This ‘uniform manifold 
approximation and projection’ (UMAP) plot 
represents 1,928 cells from a study on the early 
stages of mouse-embryo development. 
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Correction
The caption for the first image in this story 
was misleading. The top section of the 
image did not represent single-cell data; it 
was the result of a spatial analysis.

Also, the article erroneously stated that 
Le Cao’s students used a machine-learning 
approach called partial least squares. In 
fact, the team comprised one student and 
one postdoc, and the technique they used 
was an extension of the partial least squares 
method.
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