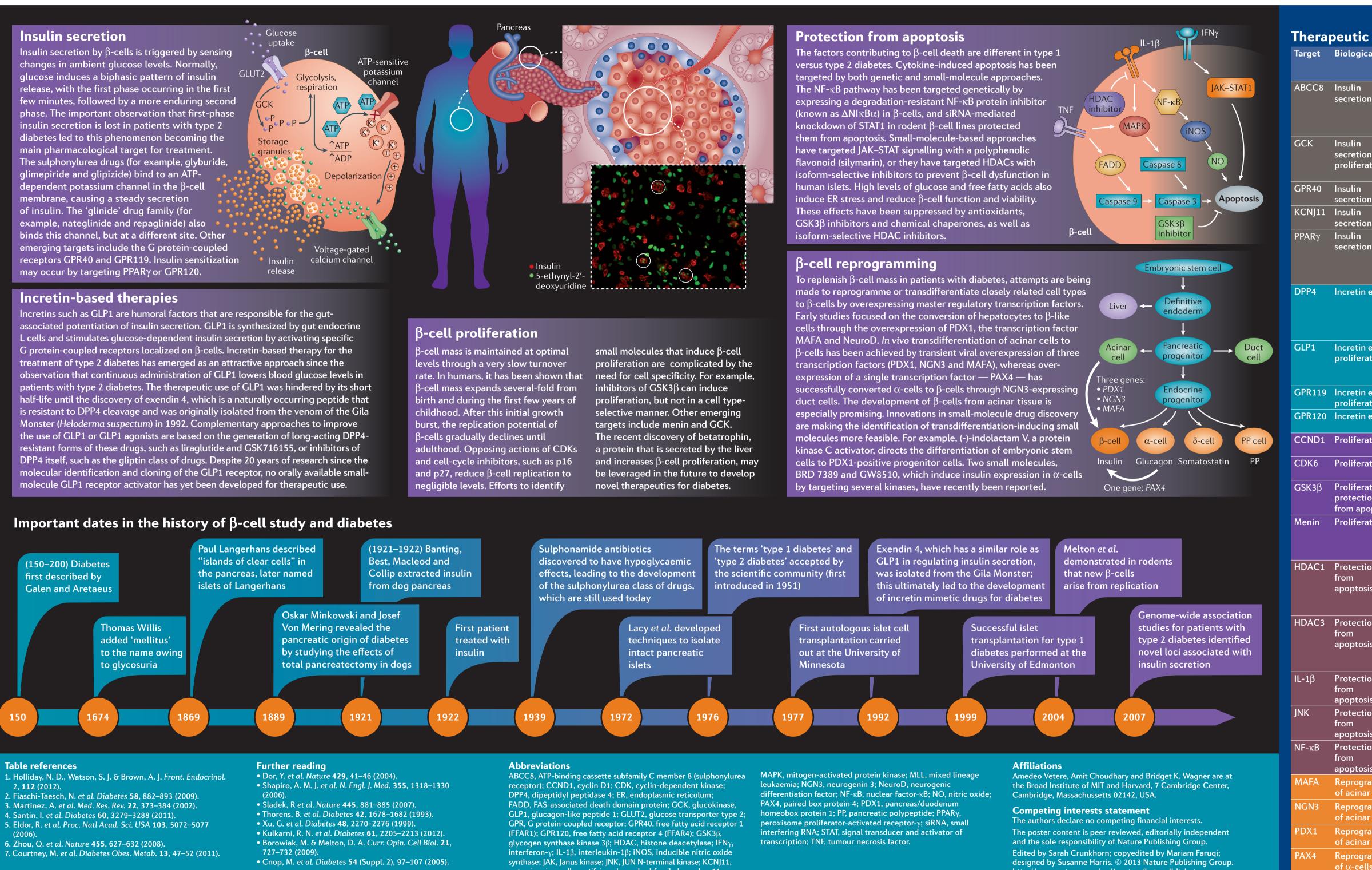
nature REVIEWS DRUG DISCOVERY

Strategies to increase pancreatic β-cell mass and function


Amedeo Vetere, Amit Choudhary and Bridget K. Wagner

type in humans. Advances in primary cell culture, cellular reprogramming and Since the discovery of insulin in 1922, the pancreatic β -cell has been a major focus in the study of diabetes. More recently, genetic and clinical studies have high-throughput screening have enabled a modern focus on identifying novel small molecules that are capable of inducing β -cell proliferation and insulin highlighted the role of β -cell failure in diabetes pathogenesis. Despite the loss of β -cell number in type 1 diabetes and deficient β -cell function in type 2 secretion, reprogramming from other cell types or protection from apoptosis. diabetes, few existing drugs are effective at protecting or restoring this cell The β -cell is a key cell type in advancing the promise of regenerative medicine.

ATP-sensitive potassium Glycolysis, hannel respiration CK Storage ↑ ATP granules **ADP** Depolarization Voltage-gated calcium channel Insulin release

Incretins such as GLP1 are humoral factors that are responsible for the gutassociated potentiation of insulin secretion. GLP1 is synthesized by gut endocrine is resistant to DPP4 cleavage and was originally isolated from the venom of the Gila Monster (Heloderma suspectum) in 1992. Complementary approaches to improve molecular identification and cloning of the GLP1 receptor, no orally available smallmolecule GLP1 receptor activator has yet been developed for therapeutic use.

 β -cell mass is maintained at optimal levels through a very slow turnover birth and during the first few years of childhood. After this initial growth burst, the replication potential of β -cells gradually declines until and cell-cycle inhibitors, such as p16 and p27, reduce β -cell replication to negligible levels. Efforts to identify

potassium inwardly rectifying channel subfamily J member 11;

http://www.nature.com/nrd/posters/betacelldiabetes

logical role	Agents;	Current	Refs
	companies	development phase	
ulin retion	Sulphonylureas; Pfizer, Roche, Sanofi-Aventis, Boehringer Ingelheim	Approved	-
ulin retion, oliferation	AMG-151, PF-04937319; Array BioPharma, Pfizer	Phase II	
ulin retion	TAK-875; Takeda	Phase III	-
ulin retion	Sulphonylureas	Approved	
ulin retion	Thiazolidine- diones; GlaxoSmithKline, Takeda, Daiichi Sankyo	Approved	
retin effects	Gliptins; Merck, Novartis, Boehringer Ingelheim, LG Life Sciences, Takeda	Approved/ Phase III	
retin effects, lliferation	GLP1 analogues; Amylin Pharmaceuticals, Novo Nordisk	Approved	
retin effects, oliferation	MBX-2982; Metabolex	Phase II	
retin effects	Pamlico Pharmaceutical	Discovery	1
oliferation		Therapeutic target	2
oliferation		Therapeutic target	2
oliferation, otection m apoptosis	CP-70949; Pfizer, Kyorin Pharmaceutical	Preclinical	3
liferation	Menin–MLL interaction inhibitors; Novapeutics	Lead compound	
otection m optosis	Non-selective inhibitors (for example, vorinostat); Merck	Approved for other indications	-
otection m optosis	Non-selective inhibitors (for example, vorinostat); Merck	Approved for other indications	
ntection m optosis	Anakinra; Amgen	Approved for other indications	
ntection m optosis	Tool compounds available	Therapeutic target	4
ntection m optosis	HDAC inhibitors may act through this pathway	In development	5
programming acinar cells	-	Therapeutic target	6
orogramming acinar cells		Therapeutic target	6
orogramming acinar cells		Therapeutic target	6
programming		Therapeutic	7

target