
nature REVIEWS DRUG DISCOVERY

Therapeutic approaches to enhance natural killer cell cytotoxicity: the force awakens

Scientific insights into the human immune system have led to unprecedented cells, their therapeutic potential in the clinic has been largely unexplored. breakthroughs in immunotherapy, and drugs and cell-based therapies that have Here, we present different pharmacological and genetic strategies to bolster been developed to bolster humoral and T cell immune responses represent NK cell antitumour immunity. These approaches, as well as advances in our an established and growing component of cancer therapeutics. Although ability to expand NK cells ex vivo and manipulate their capacity to home to the NK cells have long been known to have advantages over T cells in terms of their tumour, have now armed investigators with a variety of new strategies to capacity to induce antigen-independent immune responses against cancer harness the full potential of NK cell-based cancer immunotherapy in the clinic.

Homeostasis and proliferation Adhesion Cytokineproducing Donor cell NK cell IL-2, IL-12 and IL-15 Allogeneic NK cells ic IL-2 and IL-15 Persistance and expansion Adoptive infused Patient NK cells Endogenous lutologous NK NK cells cell expansion -2, IL-15 and eeder cells Suppressor -Cytotoxicity and tumour targeting NK cell PD1 Checkpoint - PDL1 inhibitors KIR 🖻 MHC class I mRNA EP HLA-E – Selenite NKG2A Introduction of activating Tumour epitope receptor or CAR IL-2, IL-12, TRAIL IL-15 and IMiDs IL-15 FASL FAS In vivo NK MICs NKG2D cell activation ADAM17 inhibitors → CD16 Tumour epitopes and mRNA EP mAbs, BiKEs and TriKEs Suppressor cell

be the answer you need for development, manufacturing and testing of your cell-based therapeutics.

Cells and Media

Whether you need purified natural killer cells, a mixed population of PBMCs, or unprocessed bone marrow, Lonza has the optimal cell and media solution you're looking for. If you don't see the cells that you need in our catalog, we can likely isolate them for you through our Cells on Demand Service.

applications are seamless.

Clinical Cell Therapy Services

We partner with clients to develop client-specific custom protocols to meet each unique business need, from raw material requirements and process flow to storage and distribution.

Please visit <u>www.lonza.com/immunotherapy</u> for additional information or contact scientific.support@lonza.com

virus-lymphoblastoid cell line; EGFR, epidermal growth factor receptor; EP, electroporation; FASL, FAS ligand; Fc, crystallizable fragment; GMP, good manufacturing practice; HDAC, histone deacetylase; hetlL-15, heterodimeric IL-15–sIL-15Rα complex; HSCT, haematopoietic stem cell transplantation; IL, interleukin; IL-2R, IL-2 receptor; IMiD, immunomodulatory drug; KIR, killer cell immunoglobulin-like receptor; mAb, monoclonal antibody; mbIL-15, membranebound IL-15; MIC, MHC class I polypeptide-related sequence; MHC, major histocompatibility complex; NAM, nicotinamide; NK, natural killer; NKG2, NK group 2; Pl, proteasome inhibitor; PD1, programmed cell death protein 1; PDL1, PD1 ligand 1; PSGL1, P-selectin glycoprotein ligand 1; RCC, renal cell carcinoma rIL-2, recombinant IL-2; SCC, squamous cell carcinoma; TRAIL, tumour necrosis

Richard W. Childs and Mattias Carlsten

1. Childs, R. W. & Carlsten, M. Nat. Rev. Drug Discov. 14, 487-498 (2015). Chinds, R. et al. Eur. J. Immunol. 5, 117–121 (1975).
 Herberman, R. B. et al. Int. J. Cancer 16, 216–229 (1975).

- Koide Y. & Takasugi M. J. Natl Cancer Inst. 59, 1099–1105 (1977).
 Kärre, K. in Mechanisms of Cytotoxicity by NK Cells (eds Callewaert, D. & Herberman, R. B.) 81–91 (Academic Press, 1985).
- 6. Chambers W. H. et al. J. Exp. Med. 169, 1373–1389 (1989).
- 7. Wagtmann, N. et al. Immunity 2, 439–449 (1995). etta, A. et al. J. Exp. Med. 182, 875–884 (1995) 8 Mor
- 9. Braud VM et al. Nature 391, 795-799 (1998) 10. Imai, K. et al. Lancet 356, 1795–1799 (2000).

- Acknowledgements This poster is adapted from the following review: Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. *Nat. Rev. Drug Discov.* 14, 487–498 (2015). The poster content is editorially independent and the sole responsibility
- Content is editorially independent and the sole response of Nature Publishing Group.
 Edited by Alexandra Flemming; copyedited by Sophie McCabe.
 © 2016 Nature Publishing Group.
 http://www.nature.com/nrd/posters/nkcancertherapy

Expanded, CD19 CAR mRNA genetically manipulated NK cells

Autologous

NK cell line NK-92

Effects on NK cells	Patient populations	Comments
nt can bolster NK cell antitumour immunity*		
↑ Cytotoxicity ↑ Persistence and expansion	Melanoma, RCC, AML, neuroblastoma, breast cancer, ovarian carcinoma, fallopian tube cancer and peritoneal cancer	Some studies combine IL-2 with antitumour mAbs. rIL-2 (aldesleukin) is FDA approved
↑ Cytotoxicity ↑ Persistence and expansion	Melanoma, RCC, lung cancer, SCC and multiple myeloma	sclL-15 and hetlL-15 used [‡]
↑ Cytotoxicity ↑ Migration	Healthy volunteers	Lower doses improve toxicity profile
↑ Cytotoxicity ↑ Persistence and expansion	Multiple myeloma, BCL and neuroblastoma	FDA approved
↑ Cytotoxicity	Solid tumours and multiple myeloma	Tested in combination with IPH2102 (lirilumab) [‡]
↑Cytotoxicity	Multiple myeloma, AML, melanoma, lung cancer and peritoneal cancer	IPH2101 and IPH2102 [‡]
↑ Cytotoxicity	BCL and multiple myeloma	Rituximab and veltuzumab. FDA approved
↑ Cytotoxicity	Neuroblastoma	Several different GD2-specific mAbs are being evaluated [‡]
↑Cytotoxicity	SCC	Cetuximab used in all studies [‡]
↑Cytotoxicity	Breast cancer	Trastuzumab used in all studies [‡]
↑ Cytotoxicity	CLL, RCC, lung cancer, multiple myeloma and sarcoma	Administered before infusion of expanded NK cells to sensitize tumours to NK cell TRAIL [‡]
↑ Cytotoxicity ↑ Persistence and expansion	AML, non-Hodgkin lymphoma and CLL	Used before NK cell infusion and in one study combined with pentostatin and rituximab [‡]
optively infused NK cells		
↑ Cytotoxicity	Melanoma, RCC, lung cancer, nasopharyngeal cancer	Limited number of studies in patients with different tumour types [‡]
↑ Cytotoxicity	Neuroblastoma, sarcoma, Wilms tumour and rhabdomyosarcoma	Intended to bolster NK cell tumour immunity more specifically than IL-2 does
↑ Cytotoxicity	AML, multiple myeloma, myelodysplastic syndromes, lymphoma, ovarian carcinoma, melanoma, neuroblastoma, Ewing sarcoma, breast cancer and fallopian tube cancer	Most data published on adoptive NK cell therapy comes from these studies [‡]
↑ Cytotoxicity	AML and myelodysplastic syndromes	Intended to bolster NK cell tumour immunity more specifically than IL-2 does
↑NK dose and cytotoxicity	CLL, RCC, lung cancer, multiple myeloma, sarcoma, colon cancer, melanoma, neuroblastoma, prostate cancer, ALL and pancreatic cancer	Various expansion methods used, including EBV–LCL and membrane-bound cytokine/4-1BBL feeder cells [‡]
↑ NK dose and cytotoxicity	AML, myelodysplastic syndromes, T-cell lymphoma and multiple myeloma	Various expansion methods used, including membrane-bound cytokines or 4-1BBL feeder cells. Some studies use IL-2 after NK cell infusion [‡]
↑NK dose and redirected tumour targeting	BCL	Haploidentical NK cells expanded with K562 mbIL-15/4-1BBL feeder cells
Off-the-shelf NK cells	AML, multiple myeloma and lymphoma	Dose-escalating clinical trials